gsub (Open OnDemand)

Gaussianジョブの投入

Gaussianジョブ投入は以下の2つのステップで行います:

- 1. データ準備:作業ディレクトリの設定、入力ファイルの準備
- 2. Gaussian設定: インプットの選択・編集、計算リソースの設定、投入

各ステップは画面上部のタブで切り替えることができます。

データ準備

こちらのページを参照してください。

Gaussian設定

入力ファイル設定

■ ファイル選択

- 選択方法:「参照」ボタンでファイルブラウザを使用、または直接パス入力
- プレビュー機能:ファイル選択後、内容が自動的にプレビュー表示

■ ファイル編集

- 統合エディタ:「編集」ボタンをクリックして入力ファイルを直接編集
- 保存:「保存」ボタンをクリック

 入力ファイル 	
Gaussian入力ファイル ~/ccood_job/test/] 参照 ♪ 編集 Gaussianの入力ファイル (.comまたは.gjf) のパス #p rb3lyp/3-21g force test scf=novaracc Gaussian Test Job 397: Valinomycin force 0,1 0,-1.3754834437,-2.5956821046,3.7664927822 0,-0.3728418073,-0.530460483,3.8840401686	χ test8397.com 1 #prb33/p/5-21g force test scfmovaracc 2 Gaussian Test 2.06 M97: 3 Villomyclon force 8 01.3734834472.358462104.5.37664497822 9 0.0.3381089334.6.531352817.1.779664937954 10 0.0.318728495.1.877405483437.2726153122 10 0.0.3197295134.3.187740545.3.726151321 10 0.0.3197395134.3.187740545.3.726151321 10 0.0.3197395134.3.187785554 11 0.0.119874807.1.187788959.7.2181391351 12 0.4.67795151.3.125795951.3.189779554 13 0.0.723591343.1.187785555.1.318077535 14 0.4.7235911348.3.2.7.318977957854 15 0.4.723591134832.7.3.1897795584 16 0.7.258672875.9.3696727815.9.8234263336

┃ Gaussianバージョン選択

■ 利用可能バージョン

Gaussian 16, Gaussian 09

■ G16リビジョン選択

Gaussian 16選択時に以下のリビジョンから選択:

c02, c01, b01

g16c02 (C.02) ・ Gaussian 16のリビジョンを選択します。		
((

■ ジョブタイプ選択

標準計算

• 1-64、128コア

大容量メモリ計算

- 標準計算ではメモリ不足の時に使用
- 64コアまたは128コアのみ選択可能

GPU計算

- あまり速くならないため非推奨
- GPU1基あたり最大16コア。最大128コア。
- CPUコア数設定
 - プリセット選択:1,4,8,16,32,64,128コア
 - 手動入力:入力フィールドで任意のコア数を指定
- GPU設定(GPU計算選択時):1-8基から設定
- 実行時間設定:時間・分・秒で個別に設定
- ストレージオプション
 - スクラッチ領域として大容量の/gwork使用
 - 速度は少し落ちる。

計算リソース設定				
Job Type	標準計算 ▼ 標準的なGaussian計算			
СРUコア数	1 4 8 16 32 64 128			
	8			
1から64までの値、または128を選択できます				
最大実行時間	72	0	0	
	時間	分	秒	
□ 大容量スクラッチ領域を使用 低速だが大容量のスクラッチ領域を使用します。大規模 計算に適しています。				
② 詳細設定 >				

| 詳細設定(オプション)

「詳細設定」をクリックして展開すると以下の設定が可能です:

- 通知設定:開始・終了時にもメール通知
- 既存ファイルの上書:同名のファイルが存在する場合の動作を設定
- ジョブ名設定
 - 任意のジョブ名を設定
 - 空白の場合は入力ファイルから自動生成 (例:test0397.com → test0397)

◊ 詳細設定

 \wedge

□ メール通知を送信

ジョブの開始時と終了時にメール通知を受け取ります

□ 既存ファイルを上書き

同名のファイルが存在する場合に上書きします

ジョブ名 (任意)

) 未指定の場合は入力ファイル名から自動

ジョブの識別に使用する名前(省略可)

ジョブ投入

「ジョブを投入」ボタンをクリック

▲ ジョブ投入 以上の設定でGaussianジョブを投入します。よろしければ「ジョブを投入」ボタンをクリックしてください。
④ ジョブを投入