
AMBER 24 update 3

ウェブページ

http://ambermd.org/

バージョン

Amber24 update 3, AmberTools 24 update 8

ビルド環境

GCC 13.1.1 (gcc-toolset-13)

CUDA 12.4 update 1

OpenMPI 4.1.8 (CUDA-aware)

MKL 2025.0.0.1 (oneAPI 2025.0.1)

(Gaussian 16 C.02; QM/MM テストにのみ使用)

ビルドに必要なファイル

Amber24.tar.bz2

AmberTools24.tar.bz2

ビルド手順

#!/bin/sh

VERSION=24

TOOLSVERSION=24

amber24 upadte 3 + AmberTools24 update 8

INSTALL_DIR="/apl/amber/24u3"

WORKDIR="/gwork/users/${USER}/amber24"

TARBALL_DIR="/home/users/${USER}/Software/AMBER/24"

PARALLEL=12

#--

module -s purge

module -s load gcc-toolset/13

module -s load openmpi/4.1.8/gcc13-cuda12.4u1

module -s load cuda/12.4u1

module -s load mkl/2025.0.0.1

module -s load gaussian/16c02

export LANG=C

https://ccportal.ims.ac.jp/node/3812
http://ambermd.org/

export LC_ALL=C

ulimit -s unlimited

install directory has to be prepared before running this script

if [! -d $WORKDIR]; then

 echo "Create $WORKDIR before running this script."

 exit 1

fi

build directory must be empty

if ["$(ls -A $WORKDIR)"]; then

 echo "Target directory $WORKDIR not empty"

 exit 2

fi

install directory must be empty

if ["$(ls -A $INSTALL_DIR)"]; then

 echo "Target directory $INSTALL_DIR not empty"

 exit 2

fi

prep files

cd $WORKDIR

if [-d amber${VERSION}_src]; then

 mv -f amber${VERSION}_src amber_erase

 rm -rf amber_erase &

fi

tar xf ${TARBALL_DIR}/Amber${VERSION}.tar.bz2

tar xf ${TARBALL_DIR}/AmberTools${TOOLSVERSION}.tar.bz2

prep python and update

cd amber${VERSION}_src

#export AMBERHOME=${WORKDIR}/amber${VERSION}_src

sed -i -e "1s/env python/env python3/" update_amber

python3.9 ./update_amber --update

yes | python3.9 ./update_amber --upgrade

python3.9 ./update_amber --update

CPU serial with installation of tests

echo "[CPU serial edition]"

mkdir build_cpu_serial && cd build_cpu_serial

cmake .. \

 -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

 -DCOMPILER=GNU \

 -DMPI=FALSE \

 -DCUDA=FALSE \

 -DINSTALL_TESTS=TRUE \

 -DDOWNLOAD_MINICONDA=TRUE \

 -DBUILD_QUICK=TRUE \

 -DCHECK_UPDATES=FALSE

#make -j${PARALLEL} install && make clean

make install && make clean

#cd ../ && rm -rf build_cpu_serial

cd ../

mark its origin at installation directory

cd ${INSTALL_DIR}

ln -s ./miniconda ./miniforge

cd ${WORKDIR}/amber${VERSION}_src

reuse installed python

AMBER_PYTHON=${INSTALL_DIR}/bin/amber.python

eval "$(${INSTALL_DIR}/miniforge/bin/conda shell.bash hook)"

CUDA, serial, gcc

echo "[GPU serial edition]"

mkdir build_gpu_serial && cd build_gpu_serial

cmake .. \

 -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

 -DCOMPILER=GNU \

 -DMPI=FALSE \

 -DCUDA=TRUE \

 -DINSTALL_TESTS=FALSE \

 -DDOWNLOAD_MINICONDA=FALSE \

 -DUSE_CONDA_LIBS=TRUE \

 -DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \

 -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME} \

 -DBUILD_QUICK=TRUE \

 -DCHECK_UPDATES=FALSE

#make -j${PARALLEL} install && make clean

make install && make clean

cd ../ && rm -rf build_gpu_serial

GPU parallel

echo "[GPU parallel edition]"

mkdir build_gpu_parallel && cd build_gpu_parallel

cmake .. \

 -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

 -DCOMPILER=GNU \

 -DMPI=TRUE \

 -DCUDA=TRUE \

 -DINSTALL_TESTS=FALSE \

 -DDOWNLOAD_MINICONDA=FALSE \

 -DUSE_CONDA_LIBS=TRUE \

 -DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \

 -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME} \

 -DBUILD_QUICK=TRUE \

 -DCHECK_UPDATES=FALSE

#make -j${PARALLEL} install && make clean

make install && make clean

cd ../ && rm -rf build_gpu_parallel

CPU openmp

echo "[CPU openmp edition]"

mkdir build_cpu_openmp && cd build_cpu_openmp

cmake .. \

 -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

 -DCOMPILER=GNU \

 -DMPI=FALSE \

 -DOPENMP=TRUE \

 -DCUDA=FALSE \

 -DINSTALL_TESTS=FALSE \

 -DDOWNLOAD_MINICONDA=FALSE \

 -DUSE_CONDA_LIBS=TRUE \

 -DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \

 -DBUILD_REAXFF_PUREMD=TRUE \

 -DBUILD_QUICK=TRUE \

 -DCHECK_UPDATES=FALSE

#make -j${PARALLEL} install && make clean

make install && make clean

cd ../ && rm -rf build_cpu_openmp

CPU mpi (don't build mpi+openmp version)

echo "[CPU parallel edition]"

mkdir build_cpu_parallel && cd build_cpu_parallel

cmake .. \

 -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

 -DCOMPILER=GNU \

 -DMPI=TRUE \

 -DOPENMP=FALSE \

 -DCUDA=FALSE \

 -DINSTALL_TESTS=FALSE \

 -DDOWNLOAD_MINICONDA=FALSE \

 -DUSE_CONDA_LIBS=TRUE \

 -DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \

 -DBUILD_QUICK=TRUE \

 -DCHECK_UPDATES=FALSE

#make -j${PARALLEL} install && make clean

make install && make clean

cd ../ && rm -rf build_cpu_parallel

ad hoc fix for python interpreter path

FixCondaShebang does not work for some files on this system...

(not due to symbolic links)

ORIGPATH=${WORKDIR}/amber24_src/build_cpu_serial/CMakeFiles/miniconda/install

ORIGPATH2=/lustre${ORIGPATH} # this might be involved...

NEWPATH=${INSTALL_DIR}/miniconda

cd ${INSTALL_DIR}

for f in bin/* miniconda/bin/*; do

 grep -I gwork $f

 if [$? == 0]; then

 sed -i -e "s|${ORIGPATH2}|${NEWPATH}|g" \

 -e "s|${ORIGPATH}|${NEWPATH}|g" $f

 fi

done

append env variables setting

cd ${INSTALL_DIR}

cat <<EOF >> amber.sh

rccs setting

export

LD_LIBRARY_PATH=${INSTALL_DIR}/lib:${INSTALL_DIR}/lib64:${INSTALL_DIR}/miniconda/lib:\$LD_LIBRARY_PATH

CUDA_AMBER=/apl/cuda/12.4u1

export PATH=\$CUDA_AMBER/bin:\$PATH

export LD_LIBRARY_PATH=\$CUDA_AMBER/lib64:\$LD_LIBRARY_PATH

OMPI_AMBER=/apl/openmpi/4.1.8/gcc13-cuda12.4u1

export PATH=\$OMPI_AMBER/bin:\$PATH

export LD_LIBRARY_PATH=\$OMPI_AMBER/lib:\$LD_LIBRARY_PATH

export OMPI_MCA_btl=^openib

export LD_LIBRARY_PATH=/apl/oneapi/mkl/2025.0.0.1/lib:\$LD_LIBRARY_PATH

export LD_LIBRARY_PATH=/apl/oneapi/compiler-rt/2025.0.4/lib:\$LD_LIBRARY_PATH

EOF

cat <<EOF >> amber.csh

rccs setting

setenv LD_LIBRARY_PATH

"${INSTALL_DIR}/lib:${INSTALL_DIR}/lib64:${INSTALL_DIR}/miniconda/lib:\$LD_LIBRARY_PATH"

set CUDA_AMBER=/apl/cuda/12.4u1

setenv PATH "\$CUDA_AMBER/bin:\$PATH"

setenv LD_LIBRARY_PATH "\$CUDA_AMBER/lib64:\$LD_LIBRARY_PATH"

set OMPI_AMBER=/apl/openmpi/4.1.8/gcc13-cuda12.4u1

setenv PATH "\$OMPI_AMBER/bin:\$PATH"

setenv LD_LIBRARY_PATH "\$OMPI_AMBER/lib:\$LD_LIBRARY_PATH"

setenv OMPI_MCA_btl ^openib

setenv LD_LIBRARY_PATH "/apl/oneapi/mkl/2025.0.0.1/lib:\$LD_LIBRARY_PATH"

setenv LD_LIBRARY_PATH "/apl/oneapi/compiler-rt/2025.0.4/lib:\$LD_LIBRARY_PATH"

EOF

run tests

cd ${INSTALL_DIR}

. ${INSTALL_DIR}/amber.sh

now, $AMBERHOME should be $INSTALL_DIR

parallel tests first

export DO_PARALLEL="mpirun -np 2"

make test.parallel && make clean.test

export DO_PARALLEL="mpirun -np 4"

cd test; make test.parallel.4proc; make clean; cd ../

unset DO_PARALLEL

openmp tests

make test.openmp && make clean.test

serial tests

make test.serial && make clean.test

テスト

以下のテストを ccgpu (A30*2 搭載)にて実行

#!/bin/sh

INSTALL_DIR="/apl/amber/24u3"

#--

module -s purge

module -s load gcc-toolset/13

module -s load openmpi/4.1.8/gcc13-cuda12.4u1

module -s load cuda/12.4u1

module -s load mkl/2025.0.0.1

module -s load gaussian/16c02

export LANG=C

export LC_ALL=C

ulimit -s unlimited

run tests

cd ${INSTALL_DIR}

. ${INSTALL_DIR}/amber.sh

make clean.test

gpu tests

export DO_PARALLEL="mpirun -np 2"

make test.cuda.parallel && make clean.test # DPFP

cd test; ./test_amber_cuda_parallel.sh SPFP; make clean; cd ../

#

unset DO_PARALLEL

make test.cuda.serial && make clean.test # DPFP

cd test; ./test_amber_cuda_serial.sh SPFP; make clean && cd ../

テストのログは /apl/amber/24u3/logs 以下にあります。結果については 24u1 の時と同様です。

メモ

miniforge がデフォルトとなったため、前回まで使っていた miniforge 化パッチは不要に

update_amber をシステムデフォルトの python 3.6 で実行した場合、UnicodeDecodeError

が発生するため、ここだけ python 3.9 を使用。

並列ビルド(make -j)をした場合、amber-modules/pmemd/gbl_constants_mod.mod

のあたりでビルドエラーが発生。シリアル実行にすることで解消

miniforge 内のライブラリを参照する方法が変わった？上記手順では amber.*sh の末尾で LD_LIBRARY_PATH

に miniconda/lib を加えることで回避。これをやらない場合一部の実行ファイルが正常に動かず。

miniconda を download しない場合は PYTHON_EXECUTABLE

での指定が必要？他のやり方ではうまく参照できず。

(3/13 追記) miniconda/lib を LD_LIBRARY_PATH に加えたことで module

コマンドの動作がおかしくなるケースを確認。amber24 miniforge に存在する tclsh8.6 や libtcl8.6

が使われてしまったことが原因と見られます。module list などのコマンド実行時に "WARNING:

terminal is not fully functional"

のようなメッセージが表示される場合があります。ただし、それ以上の問題は今のところ確認できていません。(24u1

時は LD_LIBRARY_PATH に miniconda/lib を入れる必要はなかったため、問題にはならず)

amber のバイナリやライブラリに手動で rpath 設定を追加して LD_LIBRARY_PATH から

miniconda/lib を外せば問題を回避できる可能性がありますが、未検証です。

(4/4 追記) LD_LIBRARY_PATH の設定を変更することで上記問題は解消。Amber と AmberTools

の再テストも行ったが、明らかな問題は確認されず。

https://ccportal.ims.ac.jp/node/3694

