
Siesta 5.0.0 MPI (Open MPI)

ウェブページ

https://gitlab.com/siesta-project/siesta

バージョン

5.0.0 (+ELPA 2024.03.001, ELSI 2.9.1, NetCDF 4.9.2, NetCDF Fortran 4.6.1, libxc 6.2.2)

ビルド環境

GCC 13.1.1 (gcc-toolset-13)

Intel MKL 2024.1

Open MPI 4.1.6

autoconf 2.72 (for ELPA)

Python 3.9

rumael.yaml (pip3.9 install ruamel.yaml --user)

ビルドに必要なファイル

siesta-5.0.0.tar.gz

netcdf-c-4.9.2.tar.gz

netcdf-fortran-4.6.1.tar.gz

libxc-6.2.2.tar.bz2

elsi_interface-v2.9.1.tar.gz

elpa-2024.03.001.tar.gz

wannier90-3.1.0.tar.gz

gnu_rccs_ompi.cmake (for ELSI 2.9.1)

### GCC ###

SET(CMAKE_Fortran_COMPILER "mpif90" CACHE STRING "MPI Fortran compiler")

SET(CMAKE_C_COMPILER "mpicc" CACHE STRING "MPI C compiler")

SET(CMAKE_CXX_COMPILER "mpicxx" CACHE STRING "MPI C++ compiler")

SET(CMAKE_Fortran_FLAGS "-O3 -fallow-argument-mismatch" CACHE STRING "Fortran flags")

SET(CMAKE_C_FLAGS "-O3 -std=c99" CACHE STRING "C flags")

SET(CMAKE_CXX_FLAGS "-O3 -std=c++11" CACHE STRING "C++ flags")

SET(ENABLE_PEXSI ON CACHE BOOL "Enable PEXSI")

SET(ENABLE_TESTS ON CACHE BOOL "Enable Fortran tests")

SET(ENABLE_C_TESTS ON CACHE BOOL "Enable C tests")

SET(LIB_PATHS "$ENV{MKLROOT}/lib/intel64" CACHE STRING "External library paths")

SET(LIBS "mkl_scalapack_lp64 mkl_gf_lp64 mkl_sequential mkl_core mkl_blacs_openmpi_lp64 m dl" CACHE

https://ccportal.ims.ac.jp/node/3687
https://gitlab.com/siesta-project/siesta


STRING "External libraries")

ビルド手順

ELSI (for PEXSI, not for ELPA)

#!/bin/sh

VERSION=2.9.1

INSTDIR=/apl/siesta/5.0.0/exts

BASEDIR=/home/users/${USER}/Software/ELSI/${VERSION}

TARBALL=${BASEDIR}/elsi_interface-v${VERSION}.tar.gz

WORKDIR=/gwork/users/${USER}

MYTC_NAME=gnu_rccs_ompi.cmake

MYTC=${BASEDIR}/${MYTC_NAME}

PARALLEL=24

export LANG=C

export LC_ALL=C

# ------------------------------------------

umask 0022

ulimit -s unlimited

cd ${WORKDIR}

if [ -d elsi_interface-v${VERSION} ]; then

 mv elsi_interface-v${VERSION} elsi-erase

 rm -rf elsi-erase &

fi

module -s purge

module -s load gcc-toolset/13

module -s load mkl/2024.1

module -s load openmpi/4.1.6/gcc13

tar xf ${TARBALL}

cd elsi_interface-v${VERSION}

cp ${MYTC} toolchains

mkdir build && cd build

cmake .. \

     -DCMAKE_INSTALL_PREFIX=${INSTDIR} \

     -DCMAKE_TOOLCHAIN_FILE=../toolchains/${MYTC_NAME} \

     -DBUILD_SHARED_LIBS=ON

make -j ${PARALLEL}

make test

make install



ELPA

#!/bin/sh

ELPA_VERSION=2024.03.001

INSTDIR=/apl/siesta/5.0.0/elpa

WORKDIR=/gwork/users/${USER}

BASEDIR=/home/users/${USER}/Software/ELPA/${ELPA_VERSION}

TARBALL=${BASEDIR}/elpa-${ELPA_VERSION}.tar.gz

PARALLEL=12

#---------------------------------------------------------------------------

umask 0022

ulimit -s unlimited

module -s purge

module -s load gcc-toolset/13

module -s load mkl/2024.1

module -s load openmpi/4.1.6/gcc13

module -s load autoconf/2.72

export LANG=C

export LC_ALL=C

export FC=mpif90

export CC=mpicc

export CXX=mpicxx

export CFLAGS="-march=znver3"

# mkl_link_tool -opts -c gnu_f -p no --cluster_library=scalapack -m openmpi

export FCFLAGS="-m64 -I${MKLROOT}/include"

# mkl_link_tool -libs -c gnu_f -p no --cluster_library=scalapack -m openmpi

export LDFLAGS="-L${MKLROOT}/lib -lmkl_scalapack_lp64 -Wl,--no-as-needed -lmkl_gf_lp64 -lmkl_sequential -

lmkl_core -lmkl_blacs_openmpi_lp64 -lpthread -lm -ldl"

cd ${WORKDIR}

if [ -d elpa-${ELPA_VERSION} ]; then

 mv elpa-${ELPA_VERSION} elpa-erase

 rm -rf elpa-erase &

fi

tar zxf ${TARBALL}

cd elpa-${ELPA_VERSION}

./configure --prefix=${INSTDIR} \

           --disable-avx512-kernels

make -j ${PARALLEL}

make check

make install

Siesta



#!/bin/sh

SIESTA_VERSION=5.0.0

INSTDIR=/apl/siesta/5.0.0

WORKDIR=/gwork/users/${USER}

BASEDIR=/home/users/${USER}/Software/Siesta/${SIESTA_VERSION}

TARBALL=${BASEDIR}/siesta-${SIESTA_VERSION}.tar.gz

NETCDF_C_VERSION=4.9.2

NETCDF_F_VERSION=4.6.1

BASEDIR_NETCDF=/home/users/${USER}/Software/NETCDF

TARBALL_NETCDF_C=${BASEDIR_NETCDF}/c${NETCDF_C_VERSION}/netcdf-c-

${NETCDF_C_VERSION}.tar.gz

TARBALL_NETCDF_F=${BASEDIR_NETCDF}/f${NETCDF_F_VERSION}/netcdf-fortran-

${NETCDF_F_VERSION}.tar.gz

WANNIER90_VERSION=3.1.0

BASEDIR_WANNIER90=/home/users/${USER}/Software/wannier90/${WANNIER90_VERSION}

TARBALL_WANNIER90=${BASEDIR_WANNIER90}/wannier90-${WANNIER90_VERSION}.tar.gz

LIBXC_VERSION=6.2.2

BASEDIR_LIBXC=/home/users/${USER}/Software/libxc

TARBALL_LIBXC=${BASEDIR_LIBXC}/${LIBXC_VERSION}/libxc-${LIBXC_VERSION}.tar.bz2

PARALLEL=12

#---------------------------------------------------------------------------

umask 0022

ulimit -s unlimited

module -s purge

module -s load gcc-toolset/13

module -s load mkl/2024.1

module -s load openmpi/4.1.6/gcc13

export LANG=C

export LC_ALL=C

export OMP_NUM_THREADS=1

# netcdf-c

cd ${WORKDIR}

if [ -d netcdf-c-${NETCDF_C_VERSION} ]; then

 mv netcdf-c-${NETCDF_C_VERSION} netcdf-c-erase

 rm -rf netcdf-c-erase &

fi

tar zxf ${TARBALL_NETCDF_C}

cd netcdf-c-${NETCDF_C_VERSION}



./configure --prefix=${INSTDIR}/exts

make -j${PARALLEL}

make -j${PARALLEL} check

make install

export PATH="${INSTDIR}/exts/bin:${PATH}"

export CPATH="${INSTDIR}/exts/include:${CPATH}"

export LD_LIBRARY_PATH="${INSTDIR}/exts/lib:${LD_LIBRARY_PATH}"

export LIBRARY_PATH="${INSTDIR}/exts/lib:${LIBRARY_PATH}"

# netcdf-f

cd ${WORKDIR}

if [ -d netcdf-fortran-${NETCDF_F_VERSION} ]; then

 mv netcdf-fortran-${NETCDF_F_VERSION} netcdf-fortran-erase

 rm -rf netcdf-fortran-erase &

fi

tar zxf ${TARBALL_NETCDF_F}

cd netcdf-fortran-${NETCDF_F_VERSION}

LDFLAGS="-L${INSTDIR}/exts/lib" \

   ./configure --prefix=${INSTDIR}/exts

make -j${PARALLEL}

make -j${PARALLEL} check

make install

# libxc

cd ${WORKDIR}

if [ -d libxc-${LIBXC_VERSION} ]; then

 mv libxc-${LIBXC_VERSION} libxc-erase

 rm -rf libxc-erase &

fi

tar xf ${TARBALL_LIBXC}

cd libxc-${LIBXC_VERSION}

autoreconf -i

./configure --prefix=${INSTDIR}/exts

make -j24

make -j24 check

make install

# siesta

cd ${WORKDIR}

rm -rf netcdf-fortran-${NETCDF_F_VERSION} \

      netcdf-c-${NETCDF_C_VERSION} \

      libxc-${LIBXC_VERSION} &

if [ -d siesta-${SIESTA_VERSION} ]; then

 mv siesta-${SIESTA_VERSION} siesta-erase



 rm -rf siesta-erase

fi

tar zxf ${TARBALL}

cd siesta-${SIESTA_VERSION}

unset CC

unset FC

export WANNIER90_PACKAGE=${TARBALL_WANNIER90}

mkdir build && cd build

cmake .. \

 -DCMAKE_INSTALL_PREFIX="${INSTDIR}" \

 -DCMAKE_PREFIX_PATH="${INSTDIR}/elpa;${INSTDIR}/exts" \

 -DCMAKE_C_COMPILER=mpicc \

 -DCMAKE_Fortran_COMPILER=mpif90 \

 -DPython3_EXECUTABLE=/usr/bin/python3.9 \

 -DSIESTA_WITH_MPI=ON \

 -DNetCDF_ROOT="${INSTDIR}/exts" \

 -DLAPACK_LIBRARY="-m64 -L${MKLROOT}/lib -Wl,--no-as-needed -lmkl_gf_lp64 -lmkl_sequential -lmkl_core -

lpthread -lm -ldl" \

 -DBLAS_LIBRARY="-m64 -L${MKLROOT}/lib -Wl,--no-as-needed -lmkl_gf_lp64 -lmkl_sequential -lmkl_core -

lpthread -lm -ldl" \

 -DSCALAPACK_LIBRARY="-lmkl_scalapack_lp64 -lmkl_gf_lp64 -lmkl_sequential -lmkl_core -

lmkl_blacs_openmpi_lp64 -lpthread -lm -ldl" \

 -DSIESTA_WITH_WANNIER90=ON \

 -DSIESTA_WITH_ELPA=ON \

 -DSIESTA_WITH_PEXSI=ON

make -j ${PARALLEL}

SIESTA_TESTS_VERIFY=1 ctest

make install

cd ../

cp -r Examples ${INSTDIR}

テスト

ELSI

すべてバス

ELPA

以下のテストでエラー

FAIL: validate_c_version_complex_double_eigenvalues_2stage_default_kernel_analytic_default.sh

FAIL: validate_c_version_real_double_eigenvalues_2stage_default_kernel_analytic_default.sh

FAIL: validate_c_version_complex_single_eigenvalues_2stage_default_kernel_analytic_default.sh

FAIL: validate_c_version_real_single_eigenvalues_2stage_default_kernel_analytic_default.sh



FAIL: validate_c_version_complex_double_eigenvectors_2stage_default_kernel_random_explicit_default.sh

FAIL: validate_c_version_complex_double_eigenvectors_2stage_default_kernel_random_default.sh

FAIL: validate_c_version_real_double_eigenvectors_2stage_default_kernel_random_explicit_default.sh

FAIL: validate_c_version_real_double_eigenvectors_2stage_default_kernel_random_default.sh

FAIL: validate_c_version_complex_single_eigenvectors_2stage_default_kernel_random_explicit_default.sh

FAIL: validate_c_version_complex_single_eigenvectors_2stage_default_kernel_random_default.sh

FAIL: validate_c_version_real_single_eigenvectors_2stage_default_kernel_random_explicit_default.sh

FAIL: validate_c_version_real_single_eigenvectors_2stage_default_kernel_random_default.sh

FAIL: validate_cpp_version_complex_double_eigenvalues_2stage_default_kernel_analytic_default.sh

FAIL: validate_cpp_version_real_double_eigenvalues_2stage_default_kernel_analytic_default.sh

FAIL: validate_cpp_version_complex_single_eigenvalues_2stage_default_kernel_analytic_default.sh

FAIL: validate_cpp_version_real_single_eigenvalues_2stage_default_kernel_analytic_default.sh

FAIL:

validate_cpp_version_complex_double_eigenvectors_2stage_default_kernel_random_explicit_default.sh

FAIL: validate_cpp_version_complex_double_eigenvectors_2stage_default_kernel_random_default.sh

FAIL: validate_cpp_version_real_double_eigenvectors_2stage_default_kernel_random_explicit_default.sh

FAIL: validate_cpp_version_real_double_eigenvectors_2stage_default_kernel_random_default.sh

FAIL: validate_cpp_version_complex_single_eigenvectors_2stage_default_kernel_random_default.sh

FAIL: validate_cpp_version_real_single_eigenvectors_2stage_default_kernel_random_explicit_default.sh

FAIL: validate_cpp_version_real_single_eigenvectors_2stage_default_kernel_random_default.sh

FAIL: validate_real_double_eigenvectors_2stage_default_kernel_analytic_default.sh

FAIL: validate_real_single_eigenvectors_2stage_default_kernel_analytic_default.sh

FAIL: validate_real_double_eigenvectors_2stage_default_kernel_frank_default.sh

FAIL: validate_real_double_eigenvectors_2stage_default_kernel_random_explicit_default.sh

FAIL: validate_real_double_eigenvectors_2stage_default_kernel_random_default.sh

FAIL:

validate_real_double_eigenvectors_2stage_default_kernel_random_split_comm_myself_explicit_default.sh

FAIL: validate_real_double_eigenvectors_2stage_default_kernel_random_split_comm_myself_default.sh

FAIL: validate_real_single_eigenvectors_2stage_default_kernel_random_explicit_default.sh

FAIL: validate_real_single_eigenvectors_2stage_default_kernel_random_default.sh

FAIL: validate_real_double_eigenvectors_2stage_default_kernel_toeplitz_default.sh

FAIL: validate_real_single_eigenvectors_2stage_default_kernel_toeplitz_default.sh

FAIL: validate_complex_2stage_banded_default.sh

FAIL: validate_single_complex_2stage_banded_default.sh

Siesta

(netcdf, libxc についてはすべてパス)

siesta

については以下のテストで数値エラー。ほとんどは軽微なエラー。一部で少し大きめな誤差が発生しているものの、コンパイラ等を変えても状況を改善させられず。

61 - siesta-02.SpinPolarization-fe_spin_mpi4[verify] (Failed)

63 - siesta-02.SpinPolarization-fe_spin_directphi_mpi4[verify] (Failed)

67 - siesta-02.SpinPolarization-fe_noncol_gga_mpi4[verify] (Failed)

71 - siesta-02.SpinPolarization-fe_noncol_sp_mpi4[verify] (Failed)



73 - siesta-03.SpinOrbit-FePt-X-X_mpi4[verify] (Failed)

87 - siesta-04.SCFMixing-chargemix_mpi4[verify] (Failed)

127 - siesta-08.GeometryOptimization-broyden_vc_mpi4[verify] (Failed)

テストログは /apl/siesta/5.0.0/test_results 以下のコピーを保存しています。

メモ

今回は openmp 版は省略

インテルコンパイラを使った時には siesta

のエラーが増える(数値エラー)。速度的にも大きなメリットは確認できなかったため、今回は gcc13 を採用

AMD CPU でインテルコンパイラを使う場合、-xHost

指定が原因でエラーが発生することがある。Config/cmake/toolchains/intel.cmake にある -xHost を -

march=core-avx2 に変更することで回避可能

icx+ifort の組み合わせでのビルドは可能。icx+ifx ではビルドできず。

Intel MPI を使った場合、並列数をあげた時に Bad DM normalization: Qtot, Tr[D*S] = 548.00000000

548.00983099 のようなメッセージでエラー終了する場合があるため openmpi をメインで使用。

Examples/Carbon_Nanoscroll を 64 並列で実行した時に確認。高確率で再現する。Open MPI

版では発生せず。

小規模並列時(4 or 8)には問題を確認できていない。

Intel MPI 版は一応別途作成。gcc13 が使えないため gcc11 を利用。

Intel MPI 版の複数バージョン(2021.5.1 - 2021.12)で試すも改善せず

(2025/2/13 更新) I_MPI_HYDRA_TOPOLIB 環境変数の値を ipl

に設定することで問題が解消することを確認。module

内で定義するようにしたため、今後は影響を受けないと思われます。

PEXSI を有効にするとログ中で &m -- Max memory after compute_DM 166.26

のようなメッセージが表示されるようになる。

SCF の最中にも徐々に数字が増えているようにも見える

ELSI 内の ELPA を使うことは難しそうであったため、ELPA だけ別に用意している。

siesta のテストで数値チェックをするためには Python 環境が必要

ruamel.yaml が必要であるため事前に pip3.9 install ruamel.yaml --user を実行して導入

テストコードで Python 3.8 を期待する部分があるため、システム標準の python (バージョン 3.6)

は利用できず。

Pathlib の unlink メソッドで missing_ok

のフラグを指定する部分の問題。(フラグ部分だけを削除すれば python 3.6

でも動作したかもしれないが未検証。)

CMake が python3

を探す場合、システム標準ではないものを優先的に見つける場合がある。今回はシステム標準の 3.6

では上記の問題があったことも有り、明示的に 3.9 を指定。


