
AMBER 22 update 4

ウェブページ

http://ambermd.org/

バージョン

Amber22 update 4, AmberTools 23 update 4

ビルド環境

GCC 10.3.1 (gcc-toolset-10)

CUDA 12.0

OpenMPI 4.1.4 (HPC-X 2.11)

(Gaussian 16 C.02; QM/MM テストにのみ使用)

ビルドに必要なファイル

Amber22.tar.bz2

AmberTools22.tar.bz2

(以下の導入手順中で AmberTools23 にアップグレードされます)

(miniconda のかわりに miniforge を使います)

patch-cmake-python (miniconda のかわりに miniforge を使用)

--- cmake/UseMiniconda.cmake.org 2022-05-27 09:43:57.000000000 +0900

+++ cmake/UseMiniconda.cmake 2022-05-27 09:56:28.000000000 +0900

@@ -84,11 +84,14 @@

 endif()

 endif()

- set(MINICONDA_INSTALLER_FILENAME "Miniconda${PYTHON_MAJOR_RELEASE}-

${MINICONDA_VERSION}-${CONTINUUM_SYSTEM_NAME}-

${CONTINUUM_BITS}.${INSTALLER_SUFFIX}")

+ #set(MINICONDA_INSTALLER_FILENAME "Miniconda${PYTHON_MAJOR_RELEASE}-

${MINICONDA_VERSION}-${CONTINUUM_SYSTEM_NAME}-

${CONTINUUM_BITS}.${INSTALLER_SUFFIX}")

+ ## mkamiya: assume x86_64 Linux...

+ set(MINICONDA_INSTALLER_FILENAME "Miniforge${PYTHON_MAJOR_RELEASE}-

${MINICONDA_VERSION}-Linux-x86_64.sh")

 # location to download the installer to

 set(MINICONDA_INSTALLER

${MINICONDA_DOWNLOAD_DIR}/${MINICONDA_INSTALLER_FILENAME})

- set(INSTALLER_URL "http://repo.continuum.io/miniconda/${MINICONDA_INSTALLER_FILENAME}")

+ #set(INSTALLER_URL "http://repo.continuum.io/miniconda/${MINICONDA_INSTALLER_FILENAME}")

https://ccportal.ims.ac.jp/node/3468
http://ambermd.org/

+ set(INSTALLER_URL "https://github.com/conda-

forge/miniforge/releases/download/${MINICONDA_VERSION}/${MINICONDA_INSTALLER_FILENAME}")

 # If we've already downloaded the installer, use it.

 if(EXISTS "${MINICONDA_INSTALLER}")

ビルド手順

#!/bin/sh

VERSION=22

TOOLSVERSION=22

ambertools will be upgraded to tools 23

MINIFORGE_VERSION="23.1.0-4" # ad hoc custom version

INSTALL_DIR="/apl/amber/22u4"

WORKDIR="/gwork/users/${USER}/amber22"

TARBALL_DIR="/home/users/${USER}/Software/AMBER/22"

PATCHX=${TARBALL_DIR}/patch-cmake-python

PARALLEL=12

#--

module -s purge

module -s load gcc-toolset/10

module -s load openmpi/4.1.4-hpcx/gcc10

module -s load cuda/12.0

module -s load gaussian/16c02

export LANG=C

export LC_ALL=C

ulimit -s unlimited

install directory has to be prepared before running this script

if [! -d $WORKDIR]; then

 echo "Create $WORKDIR before running this script."

 exit 1

fi

build directory must be empty

if ["$(ls -A $WORKDIR)"]; then

 echo "Target directory $WORKDIR not empty"

 exit 2

fi

install directory must be empty

if ["$(ls -A $INSTALL_DIR)"]; then

 echo "Target directory $INSTALL_DIR not empty"

 exit 2

fi

prep files

cd $WORKDIR

if [-d amber${VERSION}_src]; then

 mv -f amber${VERSION}_src amber_erase

 rm -rf amber_erase &

fi

bunzip2 -c ${TARBALL_DIR}/Amber${VERSION}.tar.bz2 | tar xf -

bunzip2 -c ${TARBALL_DIR}/AmberTools${TOOLSVERSION}.tar.bz2 | tar xf -

do update/upgrade of Amber/AmberTools

cd amber${VERSION}_src

export AMBERHOME=${WORKDIR}/amber${VERSION}_src

sed -i -e "1s/env python/env python3/" update_amber

sed -i -e '137s/)/, encoding=\"utf-8\")/' updateutils/patch.py

sed -i -e "s/'\.\/upgrade'/'python3', '.\/upgrade'/" updateutils/upgrade.py

python3 ./update_amber --update

yes | python3 ./update_amber --upgrade

python3 ./update_amber --update

patch -p0 < $PATCHX

sed -i -e "s/latest/${MINIFORGE_VERSION}/" cmake/PythonInterpreterConfig.cmake

CPU serial with installation of tests

echo "[CPU serial edition]"

mkdir build_cpu_serial && cd build_cpu_serial

cmake .. \

 -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

 -DCOMPILER=GNU \

 -DMPI=FALSE \

 -DCUDA=FALSE \

 -DINSTALL_TESTS=TRUE \

 -DDOWNLOAD_MINICONDA=TRUE \

 -DFORCE_INTERNAL_LIBS="arpack" \

 -DBUILD_QUICK=TRUE \

 -DCHECK_UPDATES=FALSE

make -j${PARALLEL} install && make clean

cd ../ && rm -rf build_cpu_serial

mark its origin at installation directory

cd ${INSTALL_DIR}

ln -s ./miniconda ./miniforge

cd ${WORKDIR}/amber${VERSION}_src

CUDA, serial, gcc

echo "[GPU serial edition]"

mkdir build_gpu_serial && cd build_gpu_serial

cmake .. \

 -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

 -DCOMPILER=GNU \

 -DMPI=FALSE \

 -DCUDA=TRUE \

 -DINSTALL_TESTS=FALSE \

 -DDOWNLOAD_MINICONDA=FALSE \

 -DUSE_CONDA_LIBS=TRUE \

 -DANACONDA_BIN=${INSTALL_DIR}/miniforge/bin \

 -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME} \

 -DFORCE_INTERNAL_LIBS="arpack" \

 -DBUILD_QUICK=TRUE \

 -DCHECK_UPDATES=FALSE

make -j${PARALLEL} install && make clean

cd ../ && rm -rf build_gpu_serial

GPU parallel

echo "[GPU parallel edition]"

mkdir build_gpu_parallel && cd build_gpu_parallel

cmake .. \

 -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

 -DCOMPILER=GNU \

 -DMPI=TRUE \

 -DCUDA=TRUE \

 -DINSTALL_TESTS=FALSE \

 -DDOWNLOAD_MINICONDA=FALSE \

 -DUSE_CONDA_LIBS=TRUE \

 -DANACONDA_BIN=${INSTALL_DIR}/miniforge/bin \

 -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME} \

 -DFORCE_INTERNAL_LIBS="arpack" \

 -DBUILD_QUICK=TRUE \

 -DCHECK_UPDATES=FALSE

make -j${PARALLEL} install && make clean

cd ../ && rm -rf build_gpu_parallel

CPU openmp

echo "[CPU openmp edition]"

mkdir build_cpu_openmp && cd build_cpu_openmp

cmake .. \

 -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

 -DCOMPILER=GNU \

 -DMPI=FALSE \

 -DOPENMP=TRUE \

 -DCUDA=FALSE \

 -DINSTALL_TESTS=FALSE \

 -DDOWNLOAD_MINICONDA=FALSE \

 -DUSE_CONDA_LIBS=TRUE \

 -DANACONDA_BIN=${INSTALL_DIR}/miniforge/bin \

 -DFORCE_INTERNAL_LIBS="arpack" \

 -DBUILD_REAXFF_PUREMD=TRUE \

 -DBUILD_QUICK=TRUE \

 -DCHECK_UPDATES=FALSE

make -j${PARALLEL} install && make clean

cd ../ && rm -rf build_cpu_openmp

CPU mpi (don't build mpi+openmp version)

echo "[CPU parallel edition]"

mkdir build_cpu_parallel && cd build_cpu_parallel

cmake .. \

 -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

 -DCOMPILER=GNU \

 -DMPI=TRUE \

 -DOPENMP=FALSE \

 -DCUDA=FALSE \

 -DINSTALL_TESTS=FALSE \

 -DDOWNLOAD_MINICONDA=FALSE \

 -DUSE_CONDA_LIBS=TRUE \

 -DANACONDA_BIN=${INSTALL_DIR}/miniforge/bin \

 -DFORCE_INTERNAL_LIBS="arpack" \

 -DBUILD_QUICK=TRUE \

 -DCHECK_UPDATES=FALSE

make -j${PARALLEL} install && make clean

cd ../ && rm -rf build_cpu_parallel

ad hoc fix for python path (not all the exec files are fixed)

cd ${INSTALL_DIR}/bin

for f in *.py packmol-memgen; do

 sed -i -e 2i"#!${INSTALL_DIR}/miniconda/bin/python" -e 1d $f

done

run tests

cd ${INSTALL_DIR}

. ${INSTALL_DIR}/amber.sh

now, $AMBERHOME should be $INSTALL_DIR

parallel tests first

export DO_PARALLEL="mpirun -np 2"

make test.parallel && make clean.test

export DO_PARALLEL="mpirun -np 4"

cd test; make test.parallel.4proc; make clean; cd ../

unset DO_PARALLEL

openmp tests

make test.openmp && make clean.test

serial tests

make test.serial && make clean.test

gpu tests

#export DO_PARALLEL="mpirun -np 2"

#make test.cuda.parallel && make clean.test # DPFP

#cd test; ./test_amber_cuda_parallel.sh SPFP; make clean; cd ../

#

#unset DO_PARALLEL

#make test.cuda.serial && make clean.test # DPFP

#cd test; ./test_amber_cuda_serial.sh SPFP; make clean && cd ../

GPU Tests

ログインサーバ(ccfep)ではテストできないため、ジョブとして投入。

#!/bin/sh

#PBS -l select=1:ncpus=16:mpiprocs=16:ompthreads=1:ngpus=2

#PBS -l walltime=24:00:00

amber22 + AmberTools22

INSTALL_DIR="/apl/amber/22u4"

#--

module -s purge

module -s load gcc-toolset/10

module -s load openmpi/4.1.4-hpcx/gcc10

module -s load cuda/12.0

module -s load gaussian/16c02

export LANG=C

export LC_ALL=C

ulimit -s unlimited

run tests

cd ${INSTALL_DIR}

. ${INSTALL_DIR}/amber.sh

make clean.test

gpu tests

export DO_PARALLEL="mpirun -np 2"

make test.cuda.parallel && make clean.test # DPFP

cd test; ./test_amber_cuda_parallel.sh SPFP; make clean; cd ../

#

unset DO_PARALLEL

make test.cuda.serial && make clean.test # DPFP

cd test; ./test_amber_cuda_serial.sh SPFP; make clean && cd ../

テスト結果

/apl/amber/22u4/logs 以下のログファイルをご確認ください。大きな問題は確認されていません。

gb8_trx について(gbalphaP など)はデフォルト値の変更によるもので、問題では無いとされています。

qmmm_Quick/QMMM_MD_cEw については、計算そのものは最後まで進むものの、abort

が発生しているためにエラーとなっているようです。

こちらの原因については詳細な調査を行っていません。MPI は関係無いと思われます。コンパイラや

CUDA のバージョンについては影響があるかもしれませんが、未検証です。

Run.diala-wat-qmmm-cew で未定義の output

という変数が使われていることについてエラーが出ていますが、これは上記の abort

の原因では無さそうです。

メモ

前回の内容を踏襲

https://ccportal.ims.ac.jp/node/3249

