AMBER 22 update 4

Amber22 update 4, AmberTools 23 update 4

Il RIBE

GCC 10.3.1 (gcc-toolset-10)

CUDA 12.0

OpenMPI 4.1.4 (HPC-X 2.11)

(Gaussian 16 C.02; QM/MM F R M D& F)

EILRICHELRT 74

e Amber22.tar.bz2

e AmberTools22.tar.bz2
o LA TDEAFIEFR T AmberTools23 IC7 vy FJL—RKEhFxd)
o (miniconda MM Y IZ miniforge ZFWE 9)

e patch-cmake-python (miniconda @5 b V) IZ miniforge % &)

--- cmake/UseM iniconda.cmake.org 2022-05-27 09:43:57.000000000 +0900
+++ cmake/UseMiniconda.cmake 2022-05-27 09:56: 28.000000000 +0900
@@ -84,11 +84,14 @@
endif()
endif()

- set(MINICONDA_INSTALLER_FILENAME " Miniconda®{PYTHON_MAJOR_REL EASE}-
HMINICONDA_VERSION}-${CONTINUUM_SYSTEM_NAME}-

$CONTINUUM _BITS}H${INSTALLER_SUFFIX}")

+ #set(MINICONDA_INSTALLER_FILENAME "Miniconda${PYTHON_MAJOR_REL EASE}-
HKMINICONDA_VERSION}-${CONTINUUM_SYSTEM_NAME}-
HCONTINUUM_BITS}.${INSTALLER_SUFFIX}")

+ ## mkamiya: assumex86_64 Linux...

+ set(MINICONDA_INSTALLER_FILENAME "Miniforge{PYTHON_MAJOR_REL EASE}-
${MINICONDA_VERSION}-Linux-x86_64.sh")

#location to download theinstaller to

set(MINICONDA_INSTALLER
$HMINICONDA_DOWNLOAD DIR}/${MINICONDA_ INSTALLER FILENAME})
- set(INSTALLER_URL " http://repo.continuum.io/miniconda/${MINICONDA_INSTALLER_FILENAME}")
+ #set(INSTALLER_URL " http://repo.continuum.io/miniconda/${MINICONDA_INSTALLER_FILENAME}")

https://ccportal.ims.ac.jp/node/3468
http://ambermd.org/

+ set(INSTALLER_URL " https.//github.com/conda-
forge/minifor ge/r eleases/download/${MINICONDA_VERSION}${MINICONDA_INSTALLER_FILENAME}")

If we've already downloaded the installer, useit.
if(EXISTS"${MINICONDA_INSTALLER}")

#/bin/sh

VERSION=22

TOOLSVERSION=22

ambertools will be upgraded to tools 23
MINIFORGE_VERSION="23.1.0-4" #ad hoc custom version
INSTALL_DIR="/apl/amber/22u4"

WORKDIR="/gwor k/user s${ USER}/amber 22"
TARBALL_DIR="/home/user y${USER}/Softwar e/AM BER/22"

PATCHX=${TARBALL_DIR}/patch-cmake-python

PARALLEL=12

#H
ke

module -s purge

module -sload gcc-toolset/10

module -sload openmpi/4.1.4-hpcx/geclO
module -sload cuda/12.0

module -sload gaussian/16c02

export LANG=C
export LC_ALL=C
ulimit -sunlimited

#ingtall directory hasto be prepared beforerunning this script
if [! -d SWORKDIR [; then

echo " Create $WORKDIR beforerunning this script.”

exit 1
fi

build directory must be empty

if ["$(Is-A SWORKDIR)"]; then
echo " Target directory $WORKDIR not empty"
exit 2

fi

#install directory must be empty

if ["$(Is-A SINSTALL_DIR)"]; then
echo " Target directory $INSTALL_DIR not empty"

exit 2
fi

#prep files

cd SWORKDIR

if [-d amber${VERSION} src]; then
mv -f amber §{VERSION}_src amber_erase
rm -rf amber_erase &

fi

bunzip2 -c {TARBALL_DIR}Amber ${VERSION}.tar.bz2 | tar xf -
bunzip2 -c {TARBALL_DIR}AmberToolsy{ TOOL SVERSION}.tar.bz2 | tar xf -

do update/upgrade of Amber/Amber Tools
cd amber ${VERSION} _src
export AMBERHOM E=${WORKDIR}amber ${VERSION}_src

sed -i -e" 1g/env python/env python3/" update amber

sed -i -e'1379/)/, encoding=\"utf-8\")/' updateutils/patch.py

sed -i -e" ¢'\.Vupgrade'/'python3', " Vupgrade' /" updateutilsupgrade.py
python3 ./update_amber --update

yes | python3 .Jupdate amber --upgrade

python3 ./update_amber --update

patch -p0 < $PATCHX
sed -i -e" glatest/${MINIFORGE_VERSION}/" cmake/Pythonl nter preter Config.cmake

CPU serial with installation of tests

echo " [CPU serial edition]"

mkdir build_cpu_serial & & cd build_cpu_serial

cmake ..\
-DCMAKE_INSTALL PREFIX=${INSTALL _DIR}\
-DCOMPILER=GNU\
-DMPI=FALSE\
-DCUDA=FALSE\\
-DINSTALL_TESTS=TRUE\
-DDOWNLOAD_MINICONDA=TRUE\\
-DFORCE_INTERNAL _LIBS="arpack" \
-DBUILD_QUICK=TRUE\
-DCHECK_UPDATES=FAL SE

make -j${PARALLEL} install & & make clean
cd./&& rm-rf build_cpu_serial

#mark itsorigin at installation directory
cd {INSTALL_DIR}

In -s./miniconda ./miniforge

cd {WORKDIR}amber {VERSION} _src

CUDA, serial, gcc

echo " [GPU serial edition]"

mkdir build_gpu_serial & & cd build_gpu_serial

cmake ..\
-DCMAKE_INSTALL_PREFIX=${INSTALL_DIR}\
-DCOMPILER=GNU\
-DMPI=FALSE\
-DCUDA=TRUE\
-DINSTALL_TESTS=FALSE\
-DDOWNLOAD_MINICONDA=FALSE \
-DUSE_CONDA_LIBS=TRUE\
-DANACONDA_BIN=${INSTALL_DIR}/miniforge/bin\
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME} \
-DFORCE_INTERNAL_LIBS="arpack" \
-DBUILD_QUICK=TRUE\
-DCHECK_UPDATES=FAL SE

make -j${PARALLEL} install & & makeclean
cd./&& rm-rf build_gpu_serial

GPU parallel

echo " [GPU parallel edition]"

mkdir build_gpu_parallel & & cd build_gpu_parallel

cmake ..\
-DCMAKE_INSTALL_PREFIX=${INSTALL_DIR}\
-DCOMPILER=GNU \
-DMPI=TRUE\
-DCUDA=TRUE\
-DINSTALL_TESTS=FALSE\
-DDOWNLOAD_MINICONDA=FALSE \
-DUSE_CONDA_LIBS=TRUE\
-DANACONDA_BIN=${INSTALL_DIR}miniforge/bin \
-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME} \
-DFORCE_INTERNAL _LIBS="arpack" \
-DBUILD_QUICK=TRUE\
-DCHECK_UPDATES=FAL SE

make -j ${PARALLEL} install & & makeclean
cd./&& rm-rf build_gpu_paralle

CPU openmp
echo " [CPU openmp edition]"
mkdir build_cpu_openmp & & cd build_cpu_openmp
cmake..\
-DCMAKE_INSTALL_PREFIX=${INSTALL_DIR}\
-DCOMPILER=GNU \
-DMPI=FALSE\
-DOPENMP=TRUE\
-DCUDA=FALSE\

-DINSTALL_TESTS=FALSE\

-DDOWNL OAD_MINICONDA=FAL SE \
-DUSE_CONDA_LIBS=TRUE \
-DANACONDA_BIN=${INSTALL_DIR}miniforge/bin \
-DFORCE_INTERNAL _LIBS="arpack" \
-DBUILD_REAXFF_PUREMD=TRUE \
-DBUILD_QUICK=TRUE \
-DCHECK_UPDATES=FALSE

make -j${PARALLEL} install & & makeclean
cd./&& rm -rf build_cpu_openmp

CPU mpi (don't build mpi+openmp version)

echo " [CPU parallel edition]"

mkdir build_cpu_parallel & & cd build_cpu_parallée

cmake ..\
-DCMAKE_INSTALL_PREFIX=${INSTALL_DIR}\
-DCOMPILER=GNU\
-DMPI=TRUE\
-DOPENM P=FALSE\
-DCUDA=FALSE\
-DINSTALL_TESTS=FALSE\
-DDOWNLOAD_MINICONDA=FALSE\
-DUSE_CONDA _LIBS=TRUE\
-DANACONDA_BIN=${INSTALL_DIR}/miniforge/bin \
-DFORCE_INTERNAL LIBS="arpack" \
-DBUILD_QUICK=TRUE\
-DCHECK_UPDATES=FAL SE

make -j${PARALLEL} install & & makeclean
cd./&& rm -rf build_cpu_parallel

ad hoc fix for python path (not all the exec files are fixed)
cd ${INSTALL_DIR}/bin
for f in *.py packmol-memgen; do
sed -i -e 2i" #1${INSTALL_DIR}/miniconda/bin/python" -e 1d $f
done

#runtests

cd {INSTALL_DIR}
.H{INSTALL_DIR}/amber.sh

#now, SAMBERHOME should be SINSTALL _DIR

parallel testsfirst
export DO_PARALLEL="mpirun -np 2"

maketest.parallel & & make clean.test

export DO_PARALLEL="mpirun -np 4"

cd test; make test.parallel.4proc; make clean; cd ../
unset DO_PARALLEL

openmp tests
make test.openmp & & make clean.test

serial tests
maketest.serial & & make clean.test

gpu tests

#export DO_PARALLEL="mpirun -np 2"
#maketest.cuda.parallel & & make clean.test # DPFP

#cd test; Jtest_amber_cuda_parallel.sh SPFP; make clean; cd ../
#

#unset DO_PARALLEL

#maketest.cuda.serial & & make clean.test # DPFP

#cd test; Jtest_amber_cuda serial.sh SPFP; makeclean & & cd ../

GPU Tests

A4 Y —/\(ccfep) TIETAMTERWES, YaTELTEA,

#/bin/sh
#PBS -| select=1:ncpus=16:mpiprocs=16:ompthreads=1:ngpus=2
#PBS -| walltime=24:00:00

amber 22 + Amber T ool s22
INSTALL_DIR="/apl/amber/22u4"

#
module -s purge

module -sload gcc-toolset/10

module -sload openmpi/4.1.4-hpcx/gecl0
module -sload cuda/12.0

module -sload gaussian/16c02

export LANG=C
export LC_ALL=C
ulimit -sunlimited

#run tests
cd ${INSTALL_DIR}
.${INSTALL DIR}amber.sh

make clean.test
gpu tests

export DO_PARALLEL="mpirun -np 2"
maketest.cuda.parallel & & make clean.test # DPFP

cd test; ./test_amber_cuda parallel.sh SPFP; make clean; cd ../
#

unset DO_PARALLEL

maketest.cuda.serial & & make clean.test # DPFP

cd test; ./test_amber_cuda_serial.sh SPFP; makeclean & & cd ../

| 7z iz

/apl/amber/22u4/logs U TFDOOT 7 7 4)V & CHERL IV, KELBBEIFERINTVERA,

e gb8_trx ICDWT(gbalphaP R E)ET 7 4L MEDEEICLZ2HD T, BETIHFEVWEINTVLET,
e gmmm_Quick/QMMM_MD_cEw ICDWTIE, StEZDEDIIREF TELEHE DD, abort
DREELTVWEREHICIFI—ER>TVWEEDITY,
o ZHELDERICDOVWTIHFMAREET>TLWEEA. MPIHIZBREVWEBDbIhET, 2V 1 5%
CUDA DNN—=2 3 VIZDWTIREELRHBIHLE LNEFEAD, RRIETT,
o Run.diala-wat-gmmm-cew TEREZED output
EVHITHAIMEONTVWBZEICDODWTIS—AHETWETA, ThiX EED abort
DERATITT/EZITY,

o HIBID AR % BER

https://ccportal.ims.ac.jp/node/3249

