第15回量子化学スクール

2025年12月9 - 11日の日程で「第15回量子化学スクール」を開催します。今年度も、参加者と講師の先生方との交流の機会を考慮してハイブリッド開催とします。講義は量子化学を基礎から学んで頂ける内容になっており、量子化学の経験や専門知識は前提としていません。最近のトピックスとして機械学習の基礎、マテリアルズインフォマティクス、第二量子化によるアプローチの講義もございます。現地ではポスター発表の機会もございますので、皆様の研究発表を期待しています。これから量子化学を始めようとしておられる学部生や大学院生、量子化学プログラムを使用してみたい実験研究者や企業研究者など幅広い分野からのご参加をお待ちしています。 現地参加頂いた方には、修了証を発行します。部分的な参加も歓迎いたします。

世 話 人: 白男川 貴史 (分子研)

横川 大輔(東京大学) 中井 浩巳(早稲田大学) 江原 正博(分子研、計算セ)

主 催: 自然科学研究機構 分子科学研究所

理論化学会

共 催: 自然科学研究機構 岡崎共通研究施設 計算科学研究センター

協 賛: PCoMS (分子科学)

計算物質科学協議会 (CMSF)

開催日時: 2025年12月9日 (火) ~2025年12月11日 (木) 開催場所: 岡崎コンファレンスセンター・ハイブリッド開催

定 員: 100名程度 (現地参加)

500名程度(Zoomウェビナー参加)

参加費:無料

懇 親 会: 日時:12月10日(水)18:10~19:30

会場: 岡崎コンファレンスセンター(中会議室) 懇親会費: (一般) 5,000円/(学生) 2,500円 懇親会は予約制のためキャンセルはご遠慮下さい。

初日の受付時に集金いたします。お釣りのないようにお願いいたします。

申 込 締 切: 2025年11月3日(月)まで(現地参加)*現地参加の申し込みを締め切りました。

2025年12月1日 (月) まで (Zoomウェビナー参加)

開催プログラム

12月9日 (火)

座長:横川 大輔		
13:00 - 13:10	開会の挨拶 中井 浩巳	
13:10 -	白男川 貴史 先生 (分子科学研究所)	
14:40	「Hartree-Fock(-Roothaan)法:理論・数値計算・プログラミング」	
14:55 -	中谷 佳萌 先生 (東京都立大学)	
16:25	「電子相関とpost-HF法」	
16:40 -	柳澤 将 先生 (琉球大学)	
18:10	「密度汎関数理論: 基礎から計算適用例まで」	

12月10日 (水)

座長:江原 正博			
9:00 -	齋藤 徹 先生 (広島市立大学)		
10:30	「分子物性の計算」		
10:45 -	五十幡 康弘 先生 (豊橋技術科学大学)		
12:15	「電子励起状態の計算化学」		
座長:横川大輔			
13:30 - 15:00			
15:15 -	吉川 武司 先生 (東邦大学)		
16:45	「第二量子化で解く量子化学:ダイアグラムを中心に」		

17:00 - 18:00	ポスター発表 (現地参加のみ)	
18:10 - 19:30	懇親会(現地参加のみ) 司会:江原 正博	

12月11日 (木)

座長:江原 正博		
9:00 -	藤井 幹也 先生 (奈良先端科学技術大学)	
10:30	「AI駆動型の材料プロセス研究」	
10:45 -	和佐田 祐子 先生 (名古屋工業大学)	
12:15	「GaussianによるSCFおよび構造最適化の実際」	
12:15 - 12:25	修了証の授与、閉会の挨拶 中井 浩巳	

ポスター発表

P- 1	量子化学計算に基づく熱力学量の算出	(1 早稲田大学先進理工学部) ○中井浩巳 1
P- 2	Development of Near Infrared 1064 nm Excited Raman Optical Activity Spectroscopy and Its Application to Phycocyanin	(1 Department of Chemistry and Applied Chemistry, Saga University; 2 Department of Applied Chemistry and Life Science, Toyohashi University of Technology) Otalisei Koga 1, Ryoka Seto 1, Yuu Hirose 2, Tomotsumi Fujisawa 1, Masashi Unno 1
P- 3	2体縮約密度行列のキュムラント展開に関する文献調査	(1 早稲田大学先進理工学部、2 早稲田大学理工学術院総合研究所) ○杉下大樹 1、高島千波 1、中井浩巳 1,2
P- 4	昇温脱離分析における窒素ドープグラフェンからのN ₂ 生成機構に関する理論的研究	(1 京都大学工学部、2 京都大学大学院工学研究科、3 東北大学多元物質科学研究所、4 京都大学福井謙一記念研究センター) ○今村心 1、浦谷浩輝 2、清水俊介 3、吉井丈晴 3、佐藤啓文 2,4
P- 5	深層学習モデル構築に向けた金属酵素リガンドの結合自 由エネルギーの評価	(1 広島市立大学大学院情報科学研究科) ○清水良真 1、齋藤徹 1
P- 6	Preferred Potential記述子による分子物性予測と原子寄 与に基づく計算精度の評価	(1 早稲田大学先進理工学部、2 早稲田大学理工学術院総合研究所) ○内山諒一 1、中嶋裕也 2、清野淳司 1,2
P- 7	植物染料の色と構造をつなぐ量子化学的視点を求めて	(1 足利大学共通教育センター化学) ○加治屋大介 1
P- 8	Theoretical Study on Magnetic Properties of Lanthanide Complexes with Nitroxide Radical Ligand or Other Metal Ion	(1 Graduate School of Engineering Science, Osaka Univ.; 2 QIQB, Osaka Univ.; 3 RCSEC, Osaka Univ.; 4 ICS-OTRI Osaka Univ.; 5 OTRI-Spin, Osaka Univ.) (California (Science) (1 Graduate Science) (1 Graduate Science) (1 Graduate Science) (1 Graduate Science) (2 Graduate Science) (1 Graduate Science) (2 Graduate Science) (1 Graduate Science) (2 Graduate Science) (1 Graduate Science) (1 Graduate Science) (1 Graduate Science) (1 Graduate Science) (2 Graduate Science) (1 Graduate Science) (2 Gr
P- 9	非断熱分子動力学計算によるindigo類分子の無輻射失活 過程に関する解析	(1 早稲田大学先進理工学部、2 早稲田大学理工学術院総合研究所、3 東邦大学薬学部、4 弘前大学大学院理工学研究科、5 弘前大学理工学部) ○小森谷蓮夏 1、西村好史 2、吉川武司 2,3、山崎祥平 4,5、中井浩巳 1,2
P- 10	新規環状π共役化合物の二電子酸化体におけるビラジカル 性の評価	(1 東京理科大学理学部第一部化学科) ○杉浦雅弥 1、河合英敏 1、土戸良高 1
	経路積分分子動力学を用いたミューオニウム化エチルラ ジカルの超微細結合定数に関する理論的解析	(1 横浜市立大学理学部、2 東京科学大学物質・情報卓越コース、3 横浜市立大学生命ナノシステム科学研究科) ○内田菜那子 1、桑畑和明 2、島崎智実 3、北幸海 3、立川仁典 3
P- 12	機械学習を用いた潤滑剤分子の融点・粘度予測	(1 早稲田大学先進理工学部、2 早稲田大学理工学術院総合研究所) ○大久保明彦 1、藤波美起登 2、中井浩巳 1,2
P- 13	先祖型PYPの活性部位構造の解析	(1 佐賀大学大学院理工学研究科、2 オクラホマ州立大学) ○尾中良充 1、Rosalie DOHMEN 2、藤澤知積 1、Wouter D. HOFF 2、海 野雅司 1
P- 14	Negative Fragmentation Approachによる蛋白質二次 構造に働く相互作用の量子化学的解析	(1 広島市立大学大学院情報科学研究科) ○小田雄一朗 1、鷹野優 1
P- 15	ジェミナル波動関数の局所性に基づく分割計算手法の検 討	(1 早稲田大学先進理工学部、2 早稲田大学理工学術院総合研究所) 〇澁田周吾 1、大島玲生 1、中井浩巳 1,2

P- アントラセン-ビスラジカル連結系における励起状態のス

16 ピン多重度に関する量子化学計算

(1 岡崎連携プラットフォーム、2 大阪公立大学大学院理学研究科)

○加藤賢 1、手木芳男 2

■ 宿泊について

*近郊ホテルのご案内は、下記にございます。ホテル宿泊は、ご自身で予約お願い致します。

近郊ホテルURL https://www.ims.ac.jp/guide/joint-research/lodging.html

*共同利用研究者宿泊施設(三島ロッジA・I・N室のみ)1泊2600円をご利用いただけます。希望される方は参加登録のロッジ希望にお申込みください。

(部屋数に限りがあるため、宿泊が必要な遠方の方を優先としますのでご了承下さい。)

*宿泊施設をご予約いただいた方には、メールにてご連絡いたします。

ロッジURL https://sites.google.com/orion.ac.jp/oka-lodge/

■ 交通費のサポートについて

- *学生限定(学部生も可。予算に限りがあり、ご希望に添えない場合もあります。)
- *往復交通費(自然科学研究機構規定額)を支給します。(宿泊費の支給はございませんので、ご了承ください。)
- *サポート可能な方には、申込締切後、所定の手続き案内メールを差し上げます。案内メールが届かなかった方は、申し訳ありませんがサポート致しかねますのでご了承下さい。
- *交通費サポートをご希望の方で、飛行機をご利用される方は、その旨「連絡事項」にご記入下さい。(領収書・航空券明細・搭乗券半券(搭乗証明書)の提出が必要となります。)

移動距離が短い場合や開催日より離れて搭乗日がある場合は支払の対象外となります。

- *予算に達したため交通費のサポート受付は終了しました。(2025.10.30)
- 学生の方は、賠償付傷害保険(物を壊したら保証がある保険)の加入が参加の条件です。
- 参加申込方法: web受付

参加ご希望の方は下記のサイトから申し込みください。

後日スクール参加のための情報をメールにてご連絡します。

(参加登録) https://registration.ims.ac.jp/qcs2025/registration

(分子研・計算セHP) https://ccportal.ims.ac.jp/

■ 量子化学スクールおよびホームページに関する問い合わせ先

自然科学研究機構 計算科学研究センター

量子化学スクール事務局

〒444-8585 愛知県岡崎市明大寺町字西郷中38番地

TEL:0564-55-7462

E-mail: qcs-school at ims.ac.jp (at は@に置き換えてください)

*このページ内の著作権はすべて分子科学研究所に属します。

無断転載等は一切お断りいたします。