
ジョブの投入方法(jsub)

(最終更新日: 2025/7/11)

ジョブの投入は jsub コマンドを使って行います。必要なインプットファイルは scp, sftp を用いて ccfep

上に配置するなどしてください。(scp, sftp に関してはクイックスタートガイドの情報をご確認ください。)

なお、Gaussian ジョブについては g16sub/g09sub という専用コマンドを用意しております。Gaussian

を使う場合は、まず g16sub/g09sub の方をご検討ください。(一応 jsub でも投入は可能ですが面倒です)

ORCA についても osub という専用コマンドを用意しました。こちらもご利用ください。(ORCA

を利用するには別途事前登録が必要です。)

基本的な実行方法

ジョブスクリプトの作成

RCCS 導入のアプリを使う場合 => サンプルジョブの実行方法

ヘッダー(リソース定義)のサンプルが欲しい => ジョブ投入に関するTips

1 - インタープリター(shebang)の指定(必須)

2 - リソースの定義(select; 必須)

3 - 計算時間の指定(walltime; 必須)

4 - オプションパラメータの指定

ジョブの依存関係(-W depend=afterok:(ジョブID), -W depend=afterany:(ジョブID))

一連のジョブ実行(ステップジョブ; --step もしくは --stepany)

ジョブスクリプト中の変数を投入時に指定する(-v 変数名=値)

ジョブの終了まで待つ(-W block=true)

特殊な利用方法について

CPUコアはそれほど必要無いもののメモリが多く必要な場合

１つのジョブ内で複数の計算を実行したい場合

基本的な実行方法

後述するジョブスクリプト(job.sh)を用意した上で ccfep にて以下のように実行します。(実際に入力するのは $

より後の jsub job.sh の部分だけです。)正常に実行できれば、ジョブの ID とサーバ名が表示されます。

$ jsub job.sh

6169323.ccpbs1

$

jsub

コマンド自体の実行はすぐに終了しますが、投入されたジョブがすぐに実行されるとは限りません。混雑時などにはしばらく待つ必要があります。投入したジョブは

ccfep からログアウトした後も残ります。

表示された数字のジョブのID(上記例では 6169323)はジョブを削除したりする場合に必要になります。ただし、jsub

の実行時に表示されたものを常に覚えておく必要まではありません。通常は投入後に jobinfo

コマンドで表示されるものを確認する程度で十分です。

https://ccportal.ims.ac.jp/index.php/manual/jsub
https://ccportal.ims.ac.jp/quickstartguide
https://ccportal.ims.ac.jp/manual/gsub
https://ccportal.ims.ac.jp/manual/gsub
https://ccportal.ims.ac.jp/osub
https://ccportal.ims.ac.jp/node/3060
https://ccportal.ims.ac.jp/node/3060
https://ccportal.ims.ac.jp/quickstartguide/samplejobs
https://ccportal.ims.ac.jp/manual/tips-jsub-header

キューの指定は不要ですが、jsub -q H job.sh のように H キューを指定しても問題ありません。

jsub コマンドのオプションについては jsub --help を実行することで確認できます。投入された

ジョブの状況については jobinfo コマンドで確認することができます。投入済の

ジョブを取り消したい、強制的に終了させたい場合は jdel コマンドを使います。

ジョブスクリプトの作成

RCCS

で導入したアプリケーションで、ジョブとして実行することを想定されるものについてはジョブスクリプトのサンプルを用意しています。その標準的な置き場所などについては、

サンプルジョブの実行方法のページを参照ください

。独自のアプリを実行する場合にこれらサンプルをジョブスクリプトのテンプレートとして利用することもできるかもしれません。

以下に一例として 32 MPI 並列、個々のプロセスでは OpenMP で 2

並列を行うジョブのジョブスクリプトを示します。ジョブは最大で 24

時間実行することにします。実行するプログラムは自身でビルドした my-program で、RCCS の用意した Open MPI

4.1.6 を使います。(以下のサンプルで ⇐

で示した注釈部分を実際のファイルに書くとエラーになりますので、書かないようにお願いします。)

#!/bin/sh ? 1 ????????(shebang)???

#PBS -l select=1:ncpus=64:mpiprocs=32:ompthreads=2 ? 2 ???????

#PBS -l walltime=24:00:00 ? 3 ??????

 ? 4 ???????????????

??????????????????????(??; ???????????)

???

??????????????????????????????????

cd ${PBS_O_WORKDIR}

?????? module ???????????

module -s purge

module -s load openmpi/4.1.6

????????????????????????

export PATH="/home/users/${USER}/bin:$PATH"

INPUT=myinp.inp

OUTPUT=myout.out

???????????????

mpirun -np 32 my-program -i ${INPUT} -o ${OUTPUT}

1 - インタープリター(shebang)の指定(必須)

https://ccportal.ims.ac.jp/manual/jobinfo
https://ccportal.ims.ac.jp/manual/jdel
https://ccportal.ims.ac.jp/quickstartguide/samplejobs

スクリプトのインタープリター(shebang)を指定します。通常は以下のいずれかを指定することになるかと思います

(sh/bash, csh/tcsh, zsh にそれぞれ対応します)。

#!/bin/sh

#!/bin/csh -f

#!/bin/zsh

このインタープリターの指定は必須です。

2 - リソースの定義(select; 必須)

キューの構成や CPU 点数の係数についてはこちらのページを確認ください。

このヘッダー部分のサンプルについては、こちらのページにもいくつか例を掲載しています。

select 文では CPU コア数、MPI 並列数、OpenMP 並列数、GPU

数を指定します。メモリの大きなノードを使う場合もここで指定が必要です。(行頭の#PBS -l

も必須です。)基本的な書式は以下のようになります。

#PBS -l select=(????):ncpus=(CPU???):mpiprocs=(MPI???):ompthreads=(OpenMP???
)[:ngpus=(GPU?)][:jobtype=largemem]

ノード数について

ncpus=1-63 で GPU を使わない場合(jobtype=core 相当)はノード数は常に 1 です。

ncpus=64 もしくは 128 の時(jobtype=vnode 相当)、ノード数は 1

以上の数字となります。利用するCPUコア数は (ノード数)*(CPUコア数) となります。

ngpus が 1 以上の場合(jobtype=gpu 相当)、ノード数は 1 以上の数字となります。利用するCPUコア数は

(ノード数)*(CPUコア数) で、利用する GPU数は (ノード数)*(GPU数) です。

select= の直後に入力するノード数以外の情報についてはノードあたりの数字になります。mpiprocs の値は MPI

の machine file の指定と関係します。ompthreads の値は環境変数 OMP_NUM_THREADS

に相当する意味となります。

ncpus= では利用するノードあたりの CPU コア数を指定します。指定できる数字は 1-64 と 128 です。

mpiprocs= ではノードあたりの MPI 並列数を指定します。通常は mpiprocs * ompthreads の値が ncpus

と一致するようにします。

ompthreads= では各プロセスの OpenMP 並列数を指定します。通常は mpiprocs * ompthreads の値が

ncpus と一致するようにします。OpenMP 以外のスレッド並列の場合はこの値は無視されます。

ジョブで使用できるメモリ量は ncpus= で指定した CPU コア数に比例します。jobtype=largemem

指定時は 7.875 GB/コア で、それ以外の場合は 1.875 GB/コア です。

キュー情報のページも参照してください。

MPI ライブラリのビルド方法によってはキューイングシステムから提供される machine file

を正しく考慮できない可能があります。その場合は環境変数 PBS_NODEFILE で指定されているファイルを

machine file (host file)として使う必要があります。RCCS で用意している MPI

ライブラリは暗黙的にキューイングシステムが提供する machine file を考慮できるようになっています。

GPU を使う場合は ngpus= で利用する GPU 数を指定することができます。なお、GPU あたりの CPU

コア数(ncpus/ngpus)は 16 以下である必要があります。また、１ノードあたりの GPU 数が 8

https://ccportal.ims.ac.jp/manual/queues
https://ccportal.ims.ac.jp/manual/tips-jsub-header
https://ccportal.ims.ac.jp/manual/queues

であるため、ngpus の値は 1-8 の値となります。

32 CPU ???2 GPU ????

#PBS -l select=1:ncpus=32:mpiprocs=2:ompthreads=16:ngpus=2

メモリが約 1 TB ある Type F ノードを使いたい場合は jobtype=largemem を指定します。Type F

は全部で 14 ノードしかないため非常に混雑します。できるだけ通常の Type C

ノードを使うようにしてください。なお、Type F ノードは GPU

を搭載していないため、jobtype=largemem 指定時は ngpus を指定できず、ncpus の値も 64 か 128

となります。

jobtype=largemem ????(2 ?????? 256 ??)

#PBS -l select=2:ncpus=128:mpiprocs=64:ompthreads=2:jobtype=largemem

3 - 計算時間の指定(walltime; 必須)

#PBS -l walltime=(??):(?):(?)

の書式で計算時間を指定します。walltime=30:00 のように書いた場合は 30 時間ではなく、30

分で指定されてしまいます。ご注意ください。

ジョブで消費される CPU 点数はここで指定した時間(walltime)ではなく、実際に実行した時間(elapsed

time)から計算されます。そのため、ある程度は余裕を持って時間を指定していただいて大丈夫です。ただし、長い時間を指定すると特に混雑時にジョブが入りにくくなりますので、あまりに長い時間を指定しないようお願いします。

次回のメンテナンス開始までに終了しないジョブについては次回メンテナンス終了後まで実行されません(この場合

jsub は warning

を出力します。)しかし、別の言い方をすると、長いジョブをメンテナンスの前にあらかじめジョブを投入しておけば、そのジョブはメンテナンス後すぐに実行開始されます。

4 - オプションパラメータの指定

以下のパラメータを使うと便利な場合があるかもしれません。

#PBS -m abe

#PBS -m n

メール送信機能: ジョブの開始時、終了時、abort 時にメールを送信する(-m

abe)、あるいはメール送信を完全にやめる(-m n)ことができます。abe の a は abort 時、b は開始(begin)時、e

は終了(end) 時にメールを送信することを示します。デフォルトは abort 時のみ送信します。-m abe のかわりに -

m ae とすればアボート時と終了時だけメールが送信するようにもできます。-m n

の場合はメールを送信しません。注意: 大量のジョブを実行する場合には b や e は指定しないことを推奨します。

#PBS -r n

ジョブの再実行抑制: ノードダウン等でジョブが abort

した場合にはシステム側で強制的にジョブを別のノードで再実行します。一時ファイル等の影響で再実行されると困る、正常に動かない場合はスクリプトに上記の行を入れることで再実行を抑制されます。(abort

したジョブについては CPU 点数は消費されません。再実行された場合は再実行の時間分だけ CPU

点数が消費されます。)

#PBS -j oe

出力の merge:

通常は標準出力(stdout)と標準エラー出力(stderr)の内容は別々のファイルに出力されます。このオプションを加えると出力を結合して標準出力にまとめることができます。(-

j eo にすると標準エラー出力にまとめて出力できます。)

#PBS -N (???????)

ジョブの名前: この行を加えることでジョブに名前をつけることができます。例えば -N myjob1 とすれば myjob1

という名前になります。jsub 実行時に -N オプションを与えることでも同様に名前をつけられます(例: jsub -N

myjob1 job.sh)。何も指定しない場合はジョブスクリプトのファイル名がジョブの名前になります。

一例として、以下のような指定が可能です。ジョブの開始及び終了時にメール通知を行い、ノードエラー時の再実行は不可、標準エラー出力を標準出力に

merge して出力、ジョブの名前は myjob1 となります。

#!/bin/sh

#PBS -l select=1:ncpus=64:mpiprocs=32:ompthreads=2

#PBS -l walltime=24:00:00

#PBS -m abe

#PBS -r n

#PBS -j oe

#PBS -N myjob1

cd ${PBS_O_WORKDIR}

(????)

ジョブの依存関係(-W depend=afterok, -W depend=afterany)

後述のステップジョブについてもご確認ください。そちらの方が使いやすい場合が多いと思われます。

jsub

実行時に与えることで投入するジョブに依存関係を定義することができます。以下のように実行すれば、ジョブ

6169323 が正常に終了した場合にだけ job2.sh を実行することができます。(ジョブ 6169323

がエラー終了した場合は job2.sh が実行されることはありません。)

$ jsub -W depend=afterok:6169323 job2.sh

依存しているジョブが正常に終了しなかった場合も次のジョブを実行したい場合は以下のように afterany

を指定してください。

$ jsub -W depend=afterany:6169323 job2.sh

afterok, afterany を使う場合は依存するジョブの ID があらかじめわかっている必要があります。

一連のジョブ実行(ステップジョブ; --step もしくは --stepany)

--step もしくは --stepany をつけることで比較的簡単にジョブを順番に実行することができます。

以下の例では job1.sh, job2.sh, job3.sh, job4.sh

を順番に実行することができます。前のジョブがエラー終了した場合、後続のジョブは実行されません。上述の

afterok の依存関係を指定した時と同じ挙動になっています。

$ jsub --step job1.sh job2.sh job3.sh job4.sh

以下のように --stepany を使えば、前のジョブがエラー終了した場合でも後続のジョブは実行されます。上述の

afterany の依存関係を指定した時と同じ挙動になっています。

$ jsub --stepany job1.sh job2.sh job3.sh job4.sh

--step や --stepany を使う場合も、-W depend=afterok:(ジョブID), -W depend=afterany:(ジョブID)

を指定することは可能です。

なお、キュー待ち中のステップジョブを削除した場合、後続のジョブは abort

したとみなされるため、大量のメールが送られてくる場合があります。この大量メール送信は -m n

オプションを追加して無効化することで回避が可能です。長く連なったステップジョブを実行する場合は -m n

オプションを追加することを推奨しています。(jsub --step -m n (ジョブ1) (ジョブ2) ...)

ジョブスクリプト中の変数を投入時に指定する(-v 変数名=値)

-v オプションを利用して変数を定義することができます。前述のサンプルから INPUT=myinp.inp と

OUTPUT=myout.out の行を削除したもの(job.sh)を例にして動作を説明します。

#!/bin/sh

#PBS -l select=1:ncpus=64:mpiprocs=32:ompthreads=2

#PBS -l walltime=24:00:00

cd ${PBS_O_WORKDIR}

module -s purge

module -s load openmpi/4.1.6

export PATH=/home/users/${USER}/bin

mpirun -np 32 my-program -i ${INPUT} -o ${OUTPUT}

このインプットでは INPUT と OUTPUT というシェル変数が必要ですが、それを jsub

のコマンドラインで指定することができます。

$ jsub -v INPUT=myinp.inp,OUTPUT=myout.out job.sh

変数はコンマ区切りで列挙して指定します。複数の -v

オプションを与えた場合は最後のものだけが有効となります。なお、この方法ではスクリプト中の select= 内の

ncpus や mpiprocs の値を置き換えることはできない点にご注意ください。

この方法を使った場合、jobinfo

で表示可能な情報からジョブを特定することが難しくなることが考えられます。そのような場合には -N

オプションでジョブ名を割り当てると便利かもしれません。

$ jsub -v PARAM=30,OUTPUT=param30.out -N param30 job.sh

ジョブの終了まで待つ(-W block=true)

jsub は通常ジョブを投入するだけですぐに終了しますが、-W block=true をつけるとジョブが終了するまで jsub

が待つようになります。通常使用するようなものではありませんが、デバッグ時などに使いたい場合があるかもしれません。

$ jsub -W block=true job.sh

特殊な利用方法について

CPUコアはそれほど必要無いもののメモリが多く必要な場合

RCCS でメモリを多く使う場合には CPU コア数を増やす必要があります。例えば CPU は 1

コアしか使わないもののメモリは 50 GB 以上使うのであれば、以下のように 32 コアを確保(メモリ約 60

GB)した上で 1 コアだけを使って計算するようにしてください。(CPU 点数は 32

コアを利用しているとして計算されます。)

#PBS -l select=1:ncpus=32:mpiprocs=1:ompthreads=1

それでも足りないようであれば、jobtype=largemem のノードを利用を検討ください。(ncpus=64 (メモリ約

500 GB/ノード)もしくは 128 (メモリ約 1 TB/ノード)の指定となります。)ただし、jobtype=largemem

はノード数が大変少ないため、ジョブが入りにくいことが多いです。

１つのジョブ内で複数の計算を実行したい場合

RCCS では 1

コアジョブを投入することもできますが、あまりにそのようなジョブが多いとキューイングシステムへの負荷が高くなるため、いくつか制限を設定しています。そのため、大量の小規模ジョブを投入する場合にはある程度の数を

1 つのジョブにまとめることが必要になるかもしれません。例えば、32 個の計算を 1

つのジョブにまとめるような形です。

この時、ジョブスクリプトの書き方が問題になりますが、以下のように書けば無駄が少なく、そして取りこぼしが起きることもありません。

#!/bin/sh

#PBS -l select=1:ncpus=32:mpiprocs=1:ompthreads=1

#PBS -l walltime=24:00:00

cd ${PBS_O_WORKDIR}

sh job1.sh &

sh job2.sh &

sh job3.sh &

... (??)

sh job31.sh &

sh job32.sh &

wait # ????????????????????

最後の wait がポイントで、これがあることで先に実行した 32 個のプロセスの終了を待つことができます。(wait

が無い場合はジョブスクリプトが終了してしまい、ジョブも終了したとみなされてしまいます。)この wait は

bash の組み込み関数ですが、csh/tcsh でも同じような wait コマンドがありますので、上記の方法は csh/tcsh

でも利用可能です。

上記では ncpus=32 (jobtype=core

相当)で実行していますが、細かいジョブの数が数千、数万となるようであれば ncpus=64 もしくは 128

(jobtype=vnode 相当)での利用を推奨します。

