
AMBER 24 update 3

Webpage

http://ambermd.org/

Version

Amber24 update 3, AmberTools 24 update 8

Build Environment

GCC 13.1.1 (gcc-toolset-13)

CUDA 12.4 update 1

OpenMPI 4.1.8 (CUDA-aware)

MKL 2025.0.0.1 (oneAPI 2025.0.1)

(Gaussian 16 C.02; only for QM/MM test)

Files Required

Amber24.tar.bz2

AmberTools24.tar.bz2

Build Procedure

#!/bin/sh

VERSION=24

TOOLSVERSION=24

# amber24 upadte 3 + AmberTools24 update 8

INSTALL_DIR="/apl/amber/24u3"

WORKDIR="/gwork/users/${USER}/amber24"

TARBALL_DIR="/home/users/${USER}/Software/AMBER/24"

PARALLEL=12

#----------------------------------------------------------------------

module -s purge

module -s load gcc-toolset/13

module -s load openmpi/4.1.8/gcc13-cuda12.4u1

module -s load cuda/12.4u1

module -s load mkl/2025.0.0.1

module -s load gaussian/16c02

export LANG=C

https://ccportal.ims.ac.jp/en/node/3812
http://ambermd.org/


export LC_ALL=C

ulimit -s unlimited

# install directory has to be prepared before running this script

if [ ! -d $WORKDIR ]; then

 echo "Create $WORKDIR before running this script."

 exit 1

fi

# build directory must be empty

if [ "$(ls -A $WORKDIR)" ]; then

 echo "Target directory $WORKDIR not empty"

 exit 2

fi

# install directory must be empty

if [ "$(ls -A $INSTALL_DIR)" ]; then

 echo "Target directory $INSTALL_DIR not empty"

 exit 2

fi

# prep files

cd $WORKDIR

if [ -d amber${VERSION}_src ]; then

 mv -f amber${VERSION}_src amber_erase

 rm -rf amber_erase &

fi

tar xf ${TARBALL_DIR}/Amber${VERSION}.tar.bz2

tar xf ${TARBALL_DIR}/AmberTools${TOOLSVERSION}.tar.bz2

# prep python and update

cd amber${VERSION}_src

#export AMBERHOME=${WORKDIR}/amber${VERSION}_src

sed -i -e "1s/env python/env python3/" update_amber

python3.9 ./update_amber --update

yes | python3.9 ./update_amber --upgrade

python3.9 ./update_amber --update

# CPU serial with installation of tests

echo "[CPU serial edition]"

mkdir build_cpu_serial && cd build_cpu_serial

cmake .. \

   -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

   -DCOMPILER=GNU \

   -DMPI=FALSE \

   -DCUDA=FALSE \

   -DINSTALL_TESTS=TRUE \

   -DDOWNLOAD_MINICONDA=TRUE \



   -DBUILD_QUICK=TRUE \

   -DCHECK_UPDATES=FALSE

#make -j${PARALLEL} install && make clean

make install && make clean

#cd ../ && rm -rf build_cpu_serial

cd ../

# mark its origin at installation directory

cd ${INSTALL_DIR}

ln -s ./miniconda ./miniforge

cd ${WORKDIR}/amber${VERSION}_src

# reuse installed python

AMBER_PYTHON=${INSTALL_DIR}/bin/amber.python

eval "$(${INSTALL_DIR}/miniforge/bin/conda shell.bash hook)"

# CUDA, serial, gcc

echo "[GPU serial edition]"

mkdir build_gpu_serial && cd build_gpu_serial

cmake .. \

   -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

   -DCOMPILER=GNU \

   -DMPI=FALSE \

   -DCUDA=TRUE \

   -DINSTALL_TESTS=FALSE \

   -DDOWNLOAD_MINICONDA=FALSE \

   -DUSE_CONDA_LIBS=TRUE \

   -DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \

   -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME} \

   -DBUILD_QUICK=TRUE \

   -DCHECK_UPDATES=FALSE

#make -j${PARALLEL} install && make clean

make install && make clean

cd ../ && rm -rf build_gpu_serial

# GPU parallel

echo "[GPU parallel edition]"

mkdir build_gpu_parallel && cd build_gpu_parallel

cmake .. \

   -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

   -DCOMPILER=GNU \

   -DMPI=TRUE \

   -DCUDA=TRUE \

   -DINSTALL_TESTS=FALSE \

   -DDOWNLOAD_MINICONDA=FALSE \

   -DUSE_CONDA_LIBS=TRUE \

   -DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \

   -DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME} \



   -DBUILD_QUICK=TRUE \

   -DCHECK_UPDATES=FALSE

#make -j${PARALLEL} install && make clean

make install && make clean

cd ../ && rm -rf build_gpu_parallel

# CPU openmp

echo "[CPU openmp edition]"

mkdir build_cpu_openmp && cd build_cpu_openmp

cmake .. \

   -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

   -DCOMPILER=GNU \

   -DMPI=FALSE \

   -DOPENMP=TRUE \

   -DCUDA=FALSE \

   -DINSTALL_TESTS=FALSE \

   -DDOWNLOAD_MINICONDA=FALSE \

   -DUSE_CONDA_LIBS=TRUE \

   -DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \

   -DBUILD_REAXFF_PUREMD=TRUE \

   -DBUILD_QUICK=TRUE \

   -DCHECK_UPDATES=FALSE

#make -j${PARALLEL} install && make clean

make install && make clean

cd ../ && rm -rf build_cpu_openmp

# CPU mpi (don't build mpi+openmp version)

echo "[CPU parallel edition]"

mkdir build_cpu_parallel && cd build_cpu_parallel

cmake .. \

   -DCMAKE_INSTALL_PREFIX=${INSTALL_DIR} \

   -DCOMPILER=GNU \

   -DMPI=TRUE \

   -DOPENMP=FALSE \

   -DCUDA=FALSE \

   -DINSTALL_TESTS=FALSE \

   -DDOWNLOAD_MINICONDA=FALSE \

   -DUSE_CONDA_LIBS=TRUE \

   -DPYTHON_EXECUTABLE=${INSTALL_DIR}/miniconda/bin/python \

   -DBUILD_QUICK=TRUE \

   -DCHECK_UPDATES=FALSE

#make -j${PARALLEL} install && make clean

make install && make clean

cd ../ && rm -rf build_cpu_parallel

# ad hoc fix for python interpreter path

# FixCondaShebang does not work for some files on this system...

# (not due to symbolic links)

ORIGPATH=${WORKDIR}/amber24_src/build_cpu_serial/CMakeFiles/miniconda/install



ORIGPATH2=/lustre${ORIGPATH} # this might be involved...

NEWPATH=${INSTALL_DIR}/miniconda

cd ${INSTALL_DIR}

for f in bin/* miniconda/bin/*; do

 grep -I gwork $f

 if [ $? == 0 ]; then

   sed -i -e "s|${ORIGPATH2}|${NEWPATH}|g" \

          -e "s|${ORIGPATH}|${NEWPATH}|g" $f

 fi

done

# append env variables setting

cd ${INSTALL_DIR}

cat <<EOF >> amber.sh

# rccs setting

export

LD_LIBRARY_PATH=${INSTALL_DIR}/lib:${INSTALL_DIR}/lib64:${INSTALL_DIR}/miniconda/lib:\$LD_LIBRARY_PATH

CUDA_AMBER=/apl/cuda/12.4u1

export PATH=\$CUDA_AMBER/bin:\$PATH

export LD_LIBRARY_PATH=\$CUDA_AMBER/lib64:\$LD_LIBRARY_PATH

OMPI_AMBER=/apl/openmpi/4.1.8/gcc13-cuda12.4u1

export PATH=\$OMPI_AMBER/bin:\$PATH

export LD_LIBRARY_PATH=\$OMPI_AMBER/lib:\$LD_LIBRARY_PATH

export OMPI_MCA_btl=^openib

export LD_LIBRARY_PATH=/apl/oneapi/mkl/2025.0.0.1/lib:\$LD_LIBRARY_PATH

export LD_LIBRARY_PATH=/apl/oneapi/compiler-rt/2025.0.4/lib:\$LD_LIBRARY_PATH

EOF

cat <<EOF >> amber.csh

# rccs setting

setenv LD_LIBRARY_PATH

"${INSTALL_DIR}/lib:${INSTALL_DIR}/lib64:${INSTALL_DIR}/miniconda/lib:\$LD_LIBRARY_PATH"

set CUDA_AMBER=/apl/cuda/12.4u1

setenv PATH "\$CUDA_AMBER/bin:\$PATH"

setenv LD_LIBRARY_PATH "\$CUDA_AMBER/lib64:\$LD_LIBRARY_PATH"

set OMPI_AMBER=/apl/openmpi/4.1.8/gcc13-cuda12.4u1

setenv PATH "\$OMPI_AMBER/bin:\$PATH"

setenv LD_LIBRARY_PATH "\$OMPI_AMBER/lib:\$LD_LIBRARY_PATH"

setenv OMPI_MCA_btl ^openib

setenv LD_LIBRARY_PATH "/apl/oneapi/mkl/2025.0.0.1/lib:\$LD_LIBRARY_PATH"

setenv LD_LIBRARY_PATH "/apl/oneapi/compiler-rt/2025.0.4/lib:\$LD_LIBRARY_PATH"

EOF



# run tests

cd ${INSTALL_DIR}

. ${INSTALL_DIR}/amber.sh

# now, $AMBERHOME should be $INSTALL_DIR

# parallel tests first

export DO_PARALLEL="mpirun -np 2"

make test.parallel && make clean.test

export DO_PARALLEL="mpirun -np 4"

cd test; make test.parallel.4proc; make clean; cd ../

unset DO_PARALLEL

# openmp tests

make test.openmp && make clean.test

# serial tests

make test.serial && make clean.test

Tests

GPU version tests were performed on ccgpu (equipped with A30*2).

#!/bin/sh

INSTALL_DIR="/apl/amber/24u3"

#----------------------------------------------------------------------

module -s purge

module -s load gcc-toolset/13

module -s load openmpi/4.1.8/gcc13-cuda12.4u1

module -s load cuda/12.4u1

module -s load mkl/2025.0.0.1

module -s load gaussian/16c02

export LANG=C

export LC_ALL=C

ulimit -s unlimited

# run tests

cd ${INSTALL_DIR}

. ${INSTALL_DIR}/amber.sh

make clean.test

## gpu tests

export DO_PARALLEL="mpirun -np 2"

make test.cuda.parallel && make clean.test # DPFP

cd test; ./test_amber_cuda_parallel.sh SPFP; make clean; cd ../



#

unset DO_PARALLEL

make test.cuda.serial && make clean.test # DPFP

cd test; ./test_amber_cuda_serial.sh SPFP; make clean && cd ../

Test log files are available in /apl/amber/24u3/logs. The results are almost identical to previous installation.

Notes

Miniforge is officially used now. Therefore, patch file to replace miniconda with miniforge is no longer

necessary.

"update_amber" command failed with UnicodeDecodeError when python 3.6 (system default version) was

employed. Python 3.9 (non-default version) was used only for update_amber.

Parallel make (make -j) failed with missing file error of amber-modules/pmemd/gbl_constants_mod.mod.

Serial make works fine.

Libraries in miniforge are not correctly referenced? miniconda/lib was added to LD_LIBRARY_PATH in

amber.*sh files. Otherwise, some of command do not work.

PYTHON_EXECUTABLE specification is necessary when miniconda is reused? ANACONDA_BIN no

longer works.

(Mar 13 added) adding "miniconda/lib" to LD_LIBRARY_PATH causes the minor problem of module

command, possibly due to tclsh8.6 and libtcl8.6 files in amber24 miniforge. When executing

commands such as "module list", “WARNING: terminal is not fully functional” message may

appear. However, no further problems have been confirmed so far. (This problem does not occur

for 24u1, since "miniconda/lib" does not exist in LD_LIBRARY_PATH.)

This problem may be solved by adding rpath setting to executables and libraries of amber

and removing miniconda/lib from LD_LIBRARY_PATH. But it has not yet been tested.

(Apr 4) The library problem above was solved by changing LD_LIBRARY_PATH. There were no

apparent problems in re-test of Amber/AmberTools.

https://ccportal.ims.ac.jp/en/node/3694

