Submit Jobs (jsub)

(Last update: Jul 11, 2025)

You can submit your jobs with "jsub" command. Input files (and jobscript) should be placed on ccfep beforehand

using scp or sftp etc. (For file transfer using scp and sftp, please check quick start guide page.)

For Gaussian jobs, there are special commands g16sub and g09sub. Please consider g16sub/g09sub first,

although jsub can be used.

For ORCA, we have also prepared a dedicated command osub. (Registration is required to use ORCA installed in
/apl/orca.)

e Basic Usage
e Prepare Jobscript

o sample jobs for applications installed by RCCS => Sample Jobs

o

jobscript header samples => Tips about job submission

[e]

1 - Choose Interpreter (shebang; required)
o 2 - Request Resources (select; required)

o

3 - Max Walltime of Job (walltime; required)
o 4 - Optional Parameters
¢ Job Dependencies (-W depend=afterok:(job ID), -W depend=afterany:(job ID))
Stepwise Executioin of Jobs (step jobs; --step or --stepany)
Specify Values of Variables upon Job Submission (-v VARNAME=VALUE)
Wait until Job Termination (-W block=true)

Special Usage
o Need Large Memory But not CPU Cores
o Do Many Calculations in Single Job

Basic Usage

You need to prepare a job script (named "job.sh" here; the detail is described below) first. You can submit a jobs
using "jsub" command and "job.sh" file as follows. (Don't type leading S.) If the job is successfully accepted by the

job server, job ID and server name will be shown.

$jsub job.sh
6169323.ccpbsl
$

The "jsub" command itself finishes immediately. However, submitted job is not always executed immediately. If
there are no available resources (CPU or GPU), the job needs to wait for a while. Submitted jobs remain in the
system even when you log out.

The displayed number (6169323 in the example above) is the ID of the job (job ID). This is used when you delete
the job. However, it is not necessary to always remember the displayed job ID. This is because job IDs can be

https://ccportal.ims.ac.jp/index.php/en/manual/jsub
https://ccportal.ims.ac.jp/en/quickstartguide
https://ccportal.ims.ac.jp/en/manual/gsub
https://ccportal.ims.ac.jp/en/osub
https://ccportal.ims.ac.jp/en/node/3060
https://ccportal.ims.ac.jp/en/node/3060
https://ccportal.ims.ac.jp/en/quickstartguide/samplejobs
https://ccportal.ims.ac.jp/en/manual/tips-jsub-header

listed with "jobinfo" command after the job submission.
Although you don't need to specify queue name, you can specify the queue name like "jsub -g H job.sh".

Optional parameters of "jsub" command can be listed with "jsub --help" command. Please use "jobinfo" command

to check the status of submitted jobs. If you want to delete or cancel jobs, please use "jdel" command.

Prepare Jobscript

For applications installed by RCCS, there are samples of jobscript and input files. For the standard location of
those files in RCCS, please check Sample Jobs page. These sample jobscripts can be used as a template file for

your own jobs.

We here show an example jobscript. This request 64 CPU cores, 32 MPI processes and 2 OpenMP threads. The
maximum wall time of this job is 24 hours. This will run "my-program" installed in the home directory. "my-
program" uses Open MPI 4.1.6 installed by RCCS. (NOTE: annotation part beginning with Mh the example

shouldn't be present in the actual job script file. It will cause errors.)

#/bin/sh ? 1 Choose Interpreter (shebang)
#PBS -| select=1:ncpus=64: mpiprocs=32:ompthreads=2 ? 2 Request Resour ces
#PBS -| walltime=24:00:00 ? 3 Max Walltime of Job

? 4 Optional Parameters can be added here

chdir to theworking directory when you submit job (recommended; possible to skip)

#When job starts on computation node, the working directory is usually your home dir ectory.
If you skip thisoperation, you may have trouble with input and output file paths for example.
cd ${PBS O WORKDIR}

do module setting if necessary
module -s purge
module -sload openmpi/4.1.6

#you can set parametersfor your application here
export PATH="/home/user ¥ USER}/bin: SPATH"

INPUT=myinp.inp
OUTPUT=myout.out

#run program
mpirun -np 32 my-program -i ${INPUT} -0 ${OUTPUT}

1 - Choose Interpreter (shebang; required)

Choose interpreter of the script (shebang). Normally, one of the following is used (corresponding to sh/bash,

csh/tcsh, or zsh).

https://ccportal.ims.ac.jp/en/manual/jobinfo
https://ccportal.ims.ac.jp/en/manual/jobinfo
https://ccportal.ims.ac.jp/en/manual/jdel
https://ccportal.ims.ac.jp/en/quickstartguide/samplejobs

e #!/bin/sh
e #!/bin/csh -f

e #!/bin/zsh

2 - Request Resoyrces (select; required)
This mterpreter definition is necessary.

Queue information and queue factors (CPU points definition) can be found at this page.

Some samples of this section are also available at this page.

Numbers of CPU cores, MPI processes, OpenMP threads, and GPUs are specified here ("#PBS -I" at the
beginning of the line is also necessary). Basic format is summarized as follows.

#PBS -1 sel ect=(# of nodes):ncpus=(# of CPU cores):npiprocs=(# of MPl processes): onpt hreac

For number of nodes

e If ncpus=1-63 and no GPUs (jobtype=core), the number of nodes is always 1.

e If ncpus=64 or 128 (jobtype=vnode), the number of nodes is 1T or more. The total number of CPU
cores is (# of nodes)x(# of CPU cores; ncpus).

e If ngpus >= 1 (jobtype=gpu), the number of nodes is 1 or more. The total number of CPU cores is (# of
nodes)x(# of CPU cores; ncpus). The total number of GPUs is (# of nodes)x(# of GPUs; ngpus).

For information other than the number of nodes, these numbers are per node values. The value of mpiprocs
is related to machine file (host file) or MPI. The value of ompthreads corresponds to "OMP_NUM_THREADS"

environment variable.

e ncpus= specifies number of CPU cores per node. Valid values are 1-64 and 128.

e mpiprocs= specifies number of MPI processes per node. Usually mpiprocs * ompthreads is equal to
ncpus.

e ompthreads= specifies number of OpenMP threads per process. Usually mpiprocs * ompthreads is
equal to ncpus. For non-OpenMP thread parallelism, this value is simply ignored.

e The available memory amount is proportional to ncpus= value. For jobtype=largemem, available
memory amount is 7.875 GB/core. For other types, that is 1.875 GB/core. Please also check queue

information page.

Depending on how the MPI library is built, it may not properly respect machine file (host file) provided by the
queuing system. In that case, you need to manually give the host file (defined in PBS_NODEFILE environment
variable) to mpirun or mpiexec command. MPI libraries installed by RCCS can implicitly respect the host file

provided by the queuing system.

e Number of GPUs is specified with ngpus= keyword, where the number CPU cores per GPU
(ncpus/ngpus) must be less than or equal to 16. The valid values of ngpus is 1-8, since one TypeG
node has 8 GPUs.

https://ccportal.ims.ac.jp/en/manual/queues
https://ccportal.ims.ac.jp/en/manual/tips-jsub-header
https://ccportal.ims.ac.jp/en/manual/queues
https://ccportal.ims.ac.jp/en/manual/queues

32 CPU coresand 2 GPUs example
#PBS - select=1:ncpus=32: mpiprocs=2:ompthreads=16:ngpus=2

* You need to add jobtype=largemem to use TypeF node which has 1 TB/node memory. It is to be

3 - Max W?”H%a?f &be \évr%JIgn "Iré?% E)nodes in total. Please try to use the regular TypeC nodes as much

a not cquippecd WItTr FUS. Thererore, NncCpu o4 OfF Sand ngpu NO

e '“""d‘l‘a’bféﬁ'ﬁ Lt'P']'écc:'z;se of jobtype=Ilargemem.

4 - Optional Parameters

#E?o%tybe% ééﬁéﬁs&rmaw@)noﬁ& P85 DU ek ANl
oll%ggl £I otn% R@ﬂﬁsn:]ﬁ%r?n%%r%\@:gﬁ) ompthreads=2:jobtype=largemem

If you write "walltime=30:00" this is considered 30 minutes, not 30 hours. Please beware.
#PBS - m abe

CPU points of jobs are not calculated from this walltime specification. CPU points are calculated from job
duration time (elapsed time). Therefore, you can request a somewhat longer time. However, please do not

sp%lgﬁysa_trgoqong time. Very long jobs sometimes are disadvantaged especially during busy times.

Nithernsgeesteshiinngivlosgst JBarwhen eRjoBd BT ()L AB8 (88 XS MapiMER3RG Fo R ORS M 488" Wik,
N 93¢ Of h & 8 QAP BENGS KIS WO RL IS STR A NFEIR -t IRG oW R Ah R ¥R 8 PRZS-WilARS&ID tan
4R impnssliatate 38T the BIBEtRNSEKE mail when the job ends (normally or abnormally). Note: please don't

add "b" or "e" when you submit many jobs.

#PBS -r n

Suppress restarting: when the job crashes due to the system trouble, the queuing system tries to restart the

job from the beginning. You can suppress this restart mechanism by adding this line in the jobscript. This is
useful when the job is not able to restart (due to the temporary files for example). Note: CPU points are not
consumed for aborted run. If the job is restarted after the aborting, CPU points of that job are calculated

from the elapsed time of restarted run.

#PBS -j oe

Merge outputs: normally, stdout and stderr of the job are saved in different files. If you add this option, stderr

output is merged into stdout file. (If you add "-j eo", stdout output is merged into stderr.)

#PBS -N (arbitrary job name)

Job name: you can add name to that job. For example, you can add name "myjob1" by adding "#PBS -N
myjob1". Command line option "-N" of jsub has the same functionality. If you don't add the name, the file

name of the jobscript will be the name of the job.

For example, following header specification is possible. Send email at the beginning and end of the job

Job Dependencies (-W depend=afterok, -W depend=afterany
execuPon This wont restart when the job crashes due to the system trouble. Stderr output is merged into

StdOUt Tl|e and the JOb name IS myhobl .
PleaseatsocheckstepwisejobsbetowStepwisejobsareeasiertousethanthis:

StepW|se Execution of Jobs (step jobs; --step or --stepany)

YOLFC,[QHqé%]d dependenmes on jobs. For example, a job defined in Job2 sh" file would run only if job
: ; tnread;&

wa iy
Speufy Values ofVarlables upon-Job Submlssmn (-v VARNAME=VALUE)
In t&q:s‘lgijlqwm%na&m{emiqﬁmmmbﬂ%hsh, job2.sh, job3.sh, and job4.sh sequentially. If one of the jobs

VoU Want 162 shto run rep%\rless oft e eX|tstatusof6 69323 please use ' a y eyword mstead
R adaioamat O FRUBeekerie it removed from the orlgmal sample, |IIustrates the operation.

$jsub --step jobl.sh job2.sh job3.sh job4.sh

[P Y PESCEFE I I o U N DR S R PO o T DR VIV U | I S [R L VO A P R e | D R T 1 N

SpeC|aI Usage

#PBS - walltime=24:00:00

Need |arge/NMewdryt BuetjnbisCPU Cores

vu q.’ll'L)\J_U_VV UNN\uI r\!

z} -1 — ey [1 e el OO 1 [aVa¥a¥al n e
Tatc dVdIIdUIE ITTETTTOTY dITTOUTIU TS Propourtortar to TTUTIimoer OT'TEYUTSLEU TR U CUTES UITRT TS SYSLIETIT. 1TTyOUu
moadu

modﬁé c%ﬁopenm@ﬁ)ﬂebf memory for the computation, you need to request 32 CPU cores
(approximately 60 GB of memory available). (In terms of CPU points, points are calculated from requested

HQ%@W%@%WM@Nem. However, there are some limitations for such job. This is

B¥cause existence of too many jobs place a heavy load on the queuing system. You may need to merge jobs

Alopniigle Job-RonpAT OSSR R [DT Bt IRPe ads =1

suUbMITIed a long Series oT STep Jobs. (e.g. JSUb --Step -m N Job 1) (JobZ) ... JODIN))
Thiuserwiseersls suippthalb seialles ENRYENaRAPSEFEUT, although not defined in the script. These values
Hrecas siged dnqre mjemanh issismconsider to use jobtype=Ilargemem nodes. (You can choose from

NC #l/bin/sh

no #PBS -l select=1:ncpus=32:mpiprocs=1:ompthreads=1
#PBS -I walltime=24:00:00

Va

ONn cd ${PBS O WORKDIR}
my
shjobl.sh &
Th shjob2.sh &
dif shjob3.sh &
... (Kipped)
shjob3lsh &
shjob32.sh &

wait # wait until all the background jobsfinish

The last line, wait, is the key points of this script. You can wait for the termination of the 32 background

processes by wait command. (If "wait" does not exist, the job script finishes immediately and the job itself is

also terminated. Running background processes are killed by the system even when they are still running.)

The "wait" command here is the builtin function of bash, csh/tcsh also has "wait" command just like this.

You can also use ncpus=64 or ncpus=128 instead of 32 in the example above. If you want to run thousands
or more jobs, please use ncpus=64 or 128 (jobtype=vnode). (Note: it is tedious to use multiple nodes in this

way.)

