GENESIS 2.0.3

https://www.r-ccs.riken.jp/labs/cbrt/

Version

e gcc 11.2.1 (gcc-toolset/11)
e MKL 2022.2.1
e HPC-X 2.11 (Open MPI 4.1.4)

o (HPC-X 2.13.1 was used in the actual build. However, that version caused a problem when large
number of MPI processes were employed. Switch runtime library to HPC-X 2.11 solved the
problem.)

o (In the following, assuming HPC-X 2.11 is used instead of HPC-X 2.13.1.)

Files Required

e genesis-2.0.3.tar.bz2
e tests-2.0.3.tar.bz2

Build Procedure

#/bin/sh

VERSION=2.0.3

BASEDI R=/home/user §${USER}/Softwar GENES| S/${VERSI ON}
SRC_TARBAL L =${BASEDIR}/genesis-${VVERSI ON} tar .bz2
TESTS TARBAL L=${BASEDIR}/tests-${VERSI ON}.tar .bz2

INSTAL L DIR=/apl/genesis/2.0.3

WORK DI R=/gwor k/user S${USER}
BUILDDIR=${WORKDIR}/genesis-${VERSION}
TESTSDIR=${WORK DIR}/tests-${VERSI ON}

PARALLEL_TESTS=8

#
umask 0022

module -s purge

https://ccportal.ims.ac.jp/en/node/3285
https://www.r-ccs.riken.jp/labs/cbrt/

module -sload gcc-toolset/11
module -sload mkl/2022.2.1
module -sload openmpi/4.1.4-hpcx/gecll

export LANG=C

export LC_ALL=C

export OMP_NUM_THREADS=1
#ulimit -sunlimited

cd ${WORKDIR}

if [-d genesis-${VERSION}]; then
mv genesis-${VERSION} genesis-erase
rm -rf genesis-erase &

fi

if [-d tests-${VERSION}]; then
mv tests-${VERSION} tests-erase
rm -rf tests-erase &

fi

tar jxf ${SRC_TARBALL}
tar jxf ${TESTS TARBALL}

cd ${BUILDDIR}
FC=mpif90 CC=mpicc\
LAPACK LIBS=" -L${MKLROOT}/lib/intel64 -WI|,--no-as-needed -Imkl_gf |p64 -Imkl_gnu_thread -Imkl_core -
Igomp -Ipthread -Im -IdI" \
Jconfigure --prefix=${INSTALLDIR}

parallel make does not work
make & & makeinstall

ATDYN=${INSTALLDIR}/bin/atdyn
SPDYN=${INSTAL L DIR}/bin/spdyn

cd ${TESTSDIR}/regression_test

for fin test.py test_remd.py test_rpath.py test_vib.py test_gamd.py \
test_analysisitest_analysis.py \
test_spanal/test_spana.py; do
sed -i -e" genv python/env python3/" $f
done
sed -i -e" genv python/env python2/" test_nonstrict.py

atdyn tests

Jtest.py "mpirun -np {PARALLEL TESTS} $ATDYN"
Jtest_remd.py "mpirun-np ${PARALLEL_TESTS} $SATDYN"
Jtest_rpath.py " mpirun-np ${PARALLEL _TESTS} $SATDYN"
Jtest_vib.py "mpirun -np {PARALLEL_TESTS} $ATDYN"

Jtest_ gamd.py "mpirun -np ${PARALLEL _TESTS} $ATDYN"
Jtest_nonstrict.py " mpirun -np ${PARALLEL_TESTS} $ATDYN" #7?

spdyn tests

Jtest.py "mpirun -np ${PARALLEL_TESTS} $SPDYN"
Jtest_remd.py "mpirun -np ${PARALLEL_TESTS} $SPDYN"
Jtest_rpath.py "mpirun -np {PARALLEL_TESTS} $SPDYN"
Jtest_gamd.py "mpirun -np ${PARALLEL_TESTS} $SPDYN"
Jtest_nonstrict.py " mpirun -np ${PARALLEL _TESTS} $SPDYN" #?

cd test_analysis
Jtest_analysis.py ${INSTALLDIR}/bin
cd ../

cd test_spana
Jtest_spana.py ${INSTALLDIR}/bin
cd ..

¢ When Intel oneAPI Compiler Classic was used with "-xHost" option (default setting), compilation aborted
with the messages below.
o This happens for oneAPI Compiler Classic 2022.2.1 and 2022.0.2. This error is resolved by
removing "-xHost" option.
o When "ulimit -s unlimited" is performed before the compilation, the node became not responding.

Probably the error depleted the system memory.

ifort: error #10105: /lustre/home/user s/xxx/intel/oneapi/compiler/2022.2.1/linux/bin/intel64/../../bin/intel 64/for tcom:

core dumped

ifort: warning #10102: unknown signal (-448501680)

ifort: error #10106: Fatal error in

/lustr e/home/user s/xxx/intel/oneapi/compiler/2022.2.1/linux/bin/intel64/../../bin/intel 64/fortcom, terminated by unknown
compilation aborted for at_energy_table cubic.f90 (code 1)

ifort: error #10105: /lustre/home/user s/xxx/intel/oneapi/compiler/2022.0.2/linux/bin/intel64/../../bin/intel 64/fortcom:
core dumped

ifort: warning #10102: unknown signal (-902248368)

ifort: error #10106: Fatal error in

/lustre/lhome/user s/xxx/intel/oneapi/compiler/2022.0.2/linux/bin/intel64/../../bin/intel 64/fortcom, ter minated by unknown

compilation aborted for sp_energy_pme_noopt_1dalltoall.f90 (code 1)

e Even when the error was avoided (by switching -xHost to -march=core-avx2), ifort version met errors in
tests. Also, there is no clear advantage for Intel version. Therefore, we didn't employ Intel compiler this
time.

e MKL is used to meet LAPACK requirement. libgomp is used instead of libiomp; performance of libiomp
version seems to be slightly worse. (This can be a wrong guess, though.)

o (The library setting is from output of "mkl_link_tool -libs -c gnu_f -p yes -o gomp".)

