
GAMESS 2022R2 (2022Sep30)

(this version will be installed on Mar 6, 2023)

Webpage

https://www.msg.chem.iastate.edu/gamess/index.html

Version

2022R2 (2022Sep30)

Build Environment

Intel oneAPI Compiler Classic 2022.2.1

Open MPI 3.1.6

Files Required

gamess-current.tar.gz (2022R2)

gmsnbo.i8.a (NBO7.0)

rungms_rccs_openmpi3 (please check installed rungms)

exam43.patch

--- tests/standard/exam43.inp.orig 2018-03-13 11:58:15.322187865 +0900

+++ tests/standard/exam43.inp 2018-03-13 11:58:32.049289234 +0900

@@ -48,7 +48,7 @@

 ! geometry in $DATA, although this is not necessary.

 !

 $contrl scftyp=rhf runtyp=g3mp2 $end

- $system timlim=2 mwords=2 memddi=5 $end

+ $system timlim=2 mwords=30 memddi=5 $end

 $scf dirscf=.true. $end

 $data

 Methane...G3(MP2,CCSD(T))

pbs_remsh

#!/bin/sh

host="$1"

shift

/usr/bin/ssh -n "$host" env PBS_JOBID="$PBS_JOBID" pbs_attach $*

Build Procedure

#!/bin/sh

https://ccportal.ims.ac.jp/en/node/3281
https://www.msg.chem.iastate.edu/gamess/index.html

VERSION=2022Sep30

DIRNAME=gamess${VERSION}

INSTDIR=/apl/gamess/2022R2

files and patches

MYROOT="/home/users/${USER}/Software/GAMESS/gamess${VERSION}"

GAMESS_TARBALL="${MYROOT}/gamess-current.tar.gz"

GAMESS_NBOI8A="${MYROOT}/gmsnbo.i8.a"

PATCH_EXAM43="${MYROOT}/exam43.patch"

RUNGMS_RCCS="${MYROOT}/rungms_rccs_openmpi3"

PBS_REMSH="${MYROOT}/pbs_remsh"

PARALLEL=12

#---

umask 0022

export LANG=C

export LC_ALL=C

module -s purge

. ~/intel/oneapi/compiler/2022.2.1/env/vars.sh

. ~/intel/oneapi/mkl/2022.2.1/env/vars.sh

module -s load openmpi/3.1.6/intel2022.2.1

OMPIDIR=/apl/openmpi/3.1.6/intel2022.2.1

cd ${INSTDIR}

if [-d gamess]; then

 mv gamess gamess-erase

 rm -rf gamess-erase &

fi

tar zxf ${GAMESS_TARBALL}

mv ${INSTDIR}/gamess/* .

rm -rf ${INSTDIR}/gamess # maybe already empty

for f in comp compall config lked gms-files.csh runall ddi/compddi \

 tools/remd.csh tools/localgms tools/libxc/download-libxc.csh \

 tools/mdi/download-mdi.csh; do

 sed -i -e "1s/.*/#\!\/bin\/csh -f/" $f

done

patch -p0 < ${PATCH_EXAM43}

cp ${PBS_REMSH} .

expect << EXPECT

spawn csh -f ./config

expect "After the new window is open"

send "\r"

expect "please enter your target machine name:"

send "linux64\r"

expect "GAMESS directory?"

send "${INSTDIR}\r"

expect "GAMESS build directory?"

send "${INSTDIR}\r"

expect "Version?"

send "\r"

expect "Please enter your choice of FORTRAN:"

send "oneapi-ifort\r"

expect "hit <ENTER> to continue to the math library setup."

send "\r"

expect "Enter your choice of 'mkl' or 'atlas' or 'acml' or 'libflame' or 'openblas' or 'pgiblas' or 'armpl' or 'none':"

send "mkl\r"

expect "MKL pathname?"

send "${MKLROOT}\r"

expect "MKL version (or 'proceed')?"

send "proceed\r"

expect "Hit <ENTER> to continue to the GAMESS DDI communications setup."

send "\r"

expect "Hit <ENTER> to set up your network for Linux clusters."

send "\r"

expect "communication library ('serial','sockets' or 'mpi' or 'mixed')?"

send "mpi\r"

expect "Enter MPI library"

send "openmpi\r"

expect "Please enter your openmpi"

send "${OMPIDIR}\r"

expect "Optional: Build LibXC interface?"

send "yes\r"

expect "Hit <ENTER>"

send "\r"

expect "Optional: Build MDI support?"

send "yes\r"

expect "Hit <ENTER>"

send "\r"

expect "Optional: Build Michigan State University CCT3 & CCSD3A methods?"

send "yes\r"

expect "Do you want to try LIBCCHEM"

send "no\r"

expect "Build GAMESS with OpenMP thread support?"

send "yes\r"

expect "Optional: Build GAMESS with VeraChem's VM2 library? (yes/no):"

send "no\r"

expect "Optional: Build GAMESS with TINKER plug-in? (yes/no):"

send "no\r"

expect "Optional: Build GAMESS with VB2000 plug-in? (yes/no):"

send "yes\r"

expect "Optional: Build GAMESS with XMVB plug-in? (yes/no):"

send "no\r"

expect "Optional: Build GAMESS with NEO plug-in? (yes/no):"

send "yes\r"

expect "Optional: Build GAMESS with NBO plug-in? (yes/no):"

send "yes\r"

expect "lease enter the full file name of your NBO library (being careful about your choice of i4 or i8 integers):"

send "${GAMESS_NBOI8A}\r"

expect eof

EXPECT

?

sed -i -e "s/MDI_INSTALL/GMS_3RD_PATH/" Makefile.in

sed -i -e "s/mdi.mod/mdi*.mod/" Makefile.in

make ddi

do libxc first (according to the installation guide)

csh -f ./tools/libxc/download-libxc.csh

make -j ${PARALLEL} libxc

csh -f ./tools/mdi/download-mdi.csh

make -j ${PARALLEL} libmdi

/bin/cp -f 3rd-party/mdi/objdir/MDI_Library/*.mod 3rd-party/include/mdi

/bin/cp -f 3rd-party/mdi/objdir/MDI_Library/*.mod object/

make modules

make -j ${PARALLEL}

mv rungms rungms.orig

cp ${RUNGMS_RCCS} ./rungms

chmod -R o-rwx source object libcchem

chmod -R o-rwx ddi/src ddi/server ddi/kickoff

find . -name "src" | xargs chmod -R o-rwx

localgms may need this env variable

export GMSPATH=${INSTDIR}

sed -i -e "s/tools\/localgms/rungms/" \

 -e "/RUNGMS/s/VERSION)/VERSION) \$(NCPUS)/" \

 Makefile.in

export OMP_NUM_THREADS=8

make checktest

make clean_exams

export OMP_NUM_THREADS=1

TEST_LIST="eda qmefpea efp-ci standard"

Excluded tests

cim: does not run with parallel, and ksh not avail

efmo: not enough memory? problem of input?

excitatinos: no avail test for parallel?

neb: too long

for tp in $TEST_LIST; do

 make checktest NCPUS=8 EXAM_PATH=$tp

done

ipcrm -a

Tests

Even when "setenv OMPI_MCA_mpi_yield_when_idle 1" is done, oversubscribing processes do not improve

performance.

(please don't use ncpus=32:mpiprocs=64. ncpus=32:mpiprocs=32 would be better.)

Single node performance is comparable to sockets version. (I don't know why.) For multinode runs,

this MPI version shows better performance than sockets one.

HPC-X 2.11 version failed with UCX error. Probably because UCX bundled with HPC-X does not

support multi-thread. As a result, multi node performance is quite bad.

(The error is caused by hcoll. Therefore, disabling hcoll may change the situation (not yet

tried).) Error messages disappeared, but the performance and the log (using -x

UCX_LOG_LEVEL=data) didn't show significant changes.

UCX used in Open MPI 3.1.6 is multi-thread enabled.

Intel MPI version failed if number of MPI processes becomes large.

(This may be due to libhcoll. Disabling libhcoll may solve this problem.)

