
Amber20

Webpage

http://ambermd.org/

Version

Amber20 + AmberTools20-up3

Build Environment

Intel Parallel Studio 2017 Update8 (MPI only)
GCC 7.3.1 (devtoolset-7)
CUDA 10.1.243

Files Required

Amber20.tar.bz2
AmberTools20.tar.bz2
(AmberTools20 update.1-3; obtained while running update_amber script)

Build Procedure

#!/bin/sh

VERSION=20
TOOLSVERSION=20

INSTALL_DIR="/local/apl/lx/amber20-up0"
TARBALL_DIR="/home/users/${USER}/Software/AMBER/20"

PARALLEL=12

#--
module purge
module load intel_parallelstudio/2017update8
module load scl/devtoolset-7
module load cuda/10.1

export AMBERHOME=${INSTALL_DIR}
export CUDA_HOME="/local/apl/lx/cuda-10.1"

export LANG=C
export LC_ALL=C

install directory has to be prepared before running this script
if [! -d $AMBERHOME]; then
 echo "Create $AMBERHOME before running this script."
 exit 1
fi

the install directory must be empty
if ["$(ls -A $AMBERHOME)"]; then
 echo "Target directory $AMBERHOME not empty"
 exit 2
fi

ulimit -s unlimited

prep files
cd $AMBERHOME
bunzip2 -c ${TARBALL_DIR}/Amber${VERSION}.tar.bz2 | tar xf -
bunzip2 -c ${TARBALL_DIR}/AmberTools${TOOLSVERSION}.tar.bz2 | tar xf -

https://ccportal.ims.ac.jp/en/node/2720
http://ambermd.org/

mv amber${VERSION}_src/* .
rmdir amber${VERSION}_src

install python first. otherwise, update_amber failed to connect ambermd.org
./AmberTools/src/configure_python
AMBER_PYTHON=$AMBERHOME/bin/amber.python

apply patches and update AmberTools
echo y | $AMBER_PYTHON ./update_amber --upgrade
$AMBER_PYTHON ./update_amber --update

echo "[GPU serial edition (two versions)]"
LANG=C ./configure --no-updates -cuda gnu
make -j${PARALLEL} install && make clean

echo "[GPU parallel edition (two versions)]"
LANG=C ./configure --no-updates -mpi -cuda gnu
make -j${PARALLEL} install && make clean
GPU tests will be done elsewhere
ccgpup cannot access external network, ccfep doesn't have GPGPUs

echo "[CPU serial edition]"
LANG=C ./configure --no-updates gnu
make -j${PARALLEL} install
. ${AMBERHOME}/amber.sh
make test.serial
make clean

echo "[CPU openmp edition]"
LANG=C ./configure --no-updates -openmp gnu
make -j${PARALLEL} install
make test.openmp
make clean

echo "[CPU parallel edition]"
LANG=C ./configure --no-updates -mpi gnu
make -j${PARALLEL} install
export DO_PARALLEL="mpirun -np 2"
make test.parallel
export DO_PARALLEL="mpirun -np 4"
cd test && make test.parallel.4proc

cd $AMBERHOME
make clean && chmod 700 src

Notes on Performance

GPU

On P100 (jobtype=gpup), old AMBER18-bf16 (gcc4.8 + CUDA-9.1) is slightly faster than this new AMBER20-up0
(gcc7 + CUDA-10.1) by a few percents.

AMBER20-up0 built with CUDA-9.1 was apparently slower than the version built with CUDA-10.1.
GPU version performance was not affected by the GCC version as long as we know.
This slow performance is already reported in official mailing list.

Contrary on V100 (jobtype=gpuv), new version AMBER20-up0 is faster than old one (AMBER16-bf16) by about 5
percents.
FYI, Turing generation GPUs are reported to be suffering from the terrible performance degradation by ~15 %
according to the official ML.

At this point, Amber20-up0 has some advantage over the old version only if V100 is used explicitly (jobtype=gpuv) or you
want to use newly introduced function in Amber20.
Otherwise, Amber18-bf16 might be better. (Performance of Amber20 will be improved by the future pacth releases.)

CPU

pmemd.MPI tested on DHF system
pmemd.MPI built with Intel compiler is apparently faster than that built with GCC. There are no significant
differences in performance of intel17 and intel19 builds.
GCC versions 6-8 show similar performance. However, 4.8 build is slower than the others (versions 6-8 from
scl).

Notes

MPI+OpenMP CPU version of pmemd was skipped.
"update_amber" failed when system python (python2) was used. We thus employed amber miniconda version of
python upon running "update_amber".

system python3 works fine
python2 of anaconda2-2019Jul works fine

GCC-8 + cuda version failed on GB tests. First step of GB energy (EGB) is wrong. Dynamics after the first step
seems to be influenced.

GCC-6 and GCC-7 are free from this problem. (GCC 4.8.5 may also be free from this issue.)
GPU version of GAMD failed. (both on serial and parallel; not always?)

Log lines such as GAMD = ************** appear. Or the value becomes strangely 0.0.
So far this does not depend on GCC version.
The reproducibility is not 100%? Other energies are not affected significantly. Therefore, the dynamics itself
is not affected?

There might be syncing bug on CPU and GPU buffers? Or there might be problem upon reduction of the
value? I dunno.

CPU version with Intel compiler (tested on 17u8, 19u5) failed on test/dhfr bussi test (ntt=11; Bussi thermostat) with
numerical error. Kinetic energy at 2nd step is apparently wrong.

This may imply thermostat function is completely miscompiled. We thus decided to avoid intel compiler.
gcc7+mkl17 and intel17(+mkl)+gcc7 version failed on nab test with numerical error. I couldn't judge the
importance of this error, though. (due to intel17 mkl?)

intel19(+mkl)+gcc8 version can pass nab test. However, intel19 version met strange "Program error"s in
other tests. We thus avoided intel19.
gcc7 without mkl does not suffer from this issue.

	Amber20
	Webpage
	Version
	Build Environment
	Files Required
	Build Procedure
	Notes on Performance
	GPU
	CPU

	Notes

