GAMESS-2013May01 for UV2000

http://www.msg.ameslab.gov/GAMESS/GAMESS.html

Version

May 1, 2013

Tools for Compiling

e Intel Compiler 13.1.1.163

Needed files for Compiling

e gamess-2013MayO01.tar.gz (from GAMESS webpage)

e rungms.patch

Content of rungms.patch

---rungms.orig 2013-05-18 01:15:11.000000000 +0900
+++ rungms 2013-08-21 13:28:19.759927571 +0900
@@ -60,9 +60,9 @@
See also a very old LoadLeveler "ll-gms" for some IBM systems.
#
set TARGET=sockets
-set SCR=/scr/SUSER
-set USERSCR="SUSER/scr
-set GMSPATH=/u1/mike/gamess
+set SCR=/work/users/SUSER/scr.SS
+if (1 -d SSCR) mkdir SSCR
+set GMSPATH=/local/apl/uv/gamess2013May01
#
set JOB=S1 # name of the input file xxx.inp, give only the xxx part
set VERNO=S2 # revision number of the executable created by 'lked' step
@@-92,16 492,11 @@
unig STMPDIR/machines
endif
if (SSCHED == PBS) then
- set SCR=/scratch/SPBS_JOBID
+# set SCR=/scratch/$PBS_JOBID
echo "PBS has assigned the following compute nodes to this run:"
uniqg SPBS_NODEFILE
endif
#

https://ccportal.ims.ac.jp/en/node/1340
http://www.msg.ameslab.gov/GAMESS/GAMESS.html

-echo "Available scratch disk space (Kbyte units) at beginning of the job is"
-df -k SSCR

-echo "GAMESS temporary binary files will be written to SSCR"

-echo "GAMESS supplementary output files will be written to SUSERSCR"

this added as experiment, February 2007

#

its intent is to detect large arrays allocated off the stack

limit stacksize 8192
@@-134,6 +129,15 @@

endif

endif

+set dir="dirname SJOB"
+set USERSCR="cd S$dir; pwd"

+

+echo "Available scratch disk space (Kbyte units) at beginning of the job is"
+df -k SSCR

+echo "GAMESS temporary binary files will be written to SSCR"

+echo "GAMESS supplementary output files will be written to SUSERSCR"

+

+

define many environment variables setting up file names.

anything can be overridden by a user's own choice, read 2nd.
source SGMSPATH/gms-files.csh
@@ -265,53 +269,55 @@

#
#

NODE= physical enclosure (box/blade)

1. Sequential execution is sure to be on this very same host
- if (SNCPUS == 1) then
+### if (SNCPUS == 1) then

+### set NNODES=1

+### set HOSTLIST=("hostname")

+### endif

+H##H#

+H#HHH 2. This is an example of how to run on a multi-core SMP enclosure,
+H##H# where all CPUs (aka COREs) are inside a -single- NODE.

+#### At other locations, you may wish to consider some of the examples
+#### that follow below, after commenting out this ISU specific part.
+### if (SNCPUS > 1) then

+### switch ("hostname”)

+H## case se.msg.chem.iastate.edu:

+H### case sb.msg.chem.iastate.edu:

+H#H# if (SNCPUS > 2) set NCPUS=2

+H### set NNODES=1

+H#i#H# set HOSTLIST=("hostname " :cpus=SNCPUS)

+H#H#HH#

breaksw

+H###
+H###
+H#H#
+H##
+H##
+H#H##
+H###
+H###
+H###
+H###
+H#H#
+H##
+H##
+H#H##
+H###
+H###
+H###
+H###
+H#H#
+H###
+H##
+H#H##
+H###
+H###
+H###
+H###
+H#H#
+H###
+H##
+H#H##

case br.msg.chem.iastate.edu:
if (SNCPUS > 4) set NCPUS=4
set NNODES=1
set HOSTLIST=("hostname " :cpus=SNCPUS)
breaksw

case cd.msg.chem.iastate.edu:

case zn.msg.chem.iastate.edu:

case ni.msg.chem.iastate.edu:

case co.msg.chem.iastate.edu:

case pb.msg.chem.iastate.edu:

case bi.msg.chem.iastate.edu:

case po.msg.chem.iastate.edu:

case at.msg.chem.iastate.edu:

case sc.msg.chem.iastate.edu:
if (SNCPUS > 4) set NCPUS=4
set NNODES=1
set HOSTLIST=("hostname" :cpus=SNCPUS)
breaksw

case ga.msg.chem.iastate.edu:

case ge.msg.chem.iastate.edu:

case gd.msg.chem.iastate.edu:
if (SNCPUS > 6) set NCPUS=6
set NNODES=1
set HOSTLIST=("hostname" :cpus=SNCPUS)
breaksw

default:
echo | do not know how to run this node in parallel.
exit 20

endsw
endif

set NNODES=1
- set HOSTLIST=("hostname")
- endif

2. This is an example of how to run on a multi-core SMP enclosure,
where all CPUs (aka COREs) are inside a -single- NODE.

-# At other locations, you may wish to consider some of the examples

-# that follow below, after commenting out this ISU specific part.
- if (SNCPUS > 1) then

- switch ("hostname’)

case se.msg.chem.iastate.edu:
case sb.msg.chem.iastate.edu:
if (SNCPUS > 2) set NCPUS=2
set NNODES=1
set HOSTLIST=("hostname :cpus=SNCPUS)

breaksw

- case br.msg.chem.iastate.edu:
- if (SNCPUS > 4) set NCPUS=4
- set NNODES=1
- set HOSTLIST=("hostname " :cpus=SNCPUS)
- breaksw
- case cd.msg.chem.iastate.edu:
- case zn.msg.chem.iastate.edu:
- case ni.msg.chem.iastate.edu:
- case co.msg.chem.iastate.edu:
- case pb.msg.chem.iastate.edu:
- case bi.msg.chem.iastate.edu:
- case po.msg.chem.iastate.edu:
- case at.msg.chem.iastate.edu:
- case sc.msg.chem.iastate.edu:
- if (SNCPUS > 4) set NCPUS=4
- set NNODES=1
- set HOSTLIST=(" hostname" :cpus=SNCPUS)
- breaksw
- case ga.msg.chem.iastate.edu:
- case ge.msg.chem.iastate.edu:
- case gd.msg.chem.iastate.edu:
- if (SNCPUS > 6) set NCPUS=6
- set NNODES=1
- set HOSTLIST=("hostname" :cpus=SNCPUS)
- breaksw
- default:
- echo | do not know how to run this node in parallel.
- exit 20
- endsw
- endif
set HOSTLIST=("hostname " :cpus=SNCPUS)

+
#
3. How to run in a single computer, namely the "localhost", so
this computer needn't have a proper Internet name.

@@ -363,90 +369,90 @@

names into the HOSTLIST string for the kickoff program,

and to request the host name of the fast network adapters.

#

- if (§?PBS_JOBID) then

-#

-# The IBM cluster has two Gigabit adapters in each 4-way SMP,
-# while the AXP cluster is based on a Myrinet network.

- if(Cuname’ == AIX) set NETEXT=".gig,.gig2"
- if Cuname’ == Linux) set NETEXT=".myri"

-# repeated host names in the PBS host file indicate being assigned

-# CPUs in the same SMP enclosure, which we must count up correctly.

-# Fortunately PBS gives duplicate host names in a row, not scrambled.
-# The number of hosts in the PBS node file (nmax) should equal the

-# requested processor count, NCPUS. We need to count duplicates

-# in order to learn the number of SMP enclosures, NNODES, and how

-# many CPUs inside each SMP were assigned (NSMPCPU). For example,
-# if we are assigned the host names "aaab b ccc"we must build

-# the string "a:cpus=3 b:cpus=2 c:cpus=3" so that ddikick.x will
-# know the SMP structure of the assigned node names. (C-shell handles

-# variable substitution followed by colon gracefully by S{HOST}:cpus.)

- set HOSTLIST=()

- set nmax="wc -| SPBS_NODEFILE®

- set nmax=Snmax[1]

- if (Snmax != SNCPUS) then

- echo There is processor count confusion

- exit

- endif

-# 1st host in the list is sure to be a new SMP enclosure

- set MYNODE="sed -n -e "1 p" SPBS_NODEFILE"

- set MYNODE="echo SMYNODE | awk '{split($0,a,"."); print a[1]}""
-# IPROC counts assigned processors (up to NCPUS),

-# NNODES counts number of SMP enclosures.

-# NSMPCPU counts processors in the current SMP enclosure
- @IPROC=2

- @NNODES =1

- @NSMPCPU =1

- set spacer1=":cpus="

- set spacer2=":netext="

- while(SIPROC <= Snmax)

- set MYPROC="sed -n -e "SIPROC p" SPBS_NODEFILE"

- set MYPROC="echo SMYPROC | awk '{split($0,a,"."); print a[1]}""
- if(SMYPROC != SMYNODE) then

- set HOSTLIST = (SHOSTLIST SMYNODESspacer1 SNSMPCPUSspacer2SNETEXT)
- set MYNODE=SMYPROC

- @ NSMPCPU =0

- @ NNODES++

- endif

- @ IPROC++

- @ NSMPCPU++

- end

- set HOSTLIST = (SHOSTLIST SMYNODESspacer1 SNSMPCPUSspacer2SNETEXT)
- endif

-#

-# we have now finished setting up a correct HOSTLIST.

-# uncomment the next two if you are doing script debugging.

-#--echo "The generated host list is"
-#--echo SHOSTLIST

-#

-#

-# choose remote shell execution program.

-# Parallel run do initial launch of GAMESS on remote nodes by the
-# following program. Note that the authentication keys for ssh

-# must have been set up correctly.

-# If you wish, choose 'rsh' using .rhosts authentication on next line.

- setenv DDI_RSH ssh

-#

- if(SDDI_RSH == ssh) then

setenv DDI_RCP scp

else

setenv DDI_RCP rcp

- endif

-# One way to be sure that the master node of each subgroup
-# has its necessary copy of the input file is to stuff a

-# copy of the input file onto every single node right here.

- if (SGDDIjob == true) then

- @n=2 # masterin master group already did 'cp' above

- while (Sn <= SNNODES)

- set host=SHOSTLIST[Sn]

- set host="echo Shost | cut-f1 -d :* # drop anything behind a colon
- echo SDDI_RCP SSCR/SJOB.FO5 S{host}:SSCR/SJOB.F05

- SDDI_RCP SSCR/SJOB.F05 S${host}:SSCR/SJOB.FO5

- @ n++

- end

- endif

+### if (S?PBS_JOBID) then

+HH#H#

+HHHH The IBM cluster has two Gigabit adapters in each 4-way SMP,
+HHH#H# while the AXP cluster is based on a Myrinet network.

+### if Cuname’ == AIX) set NETEXT=".gig,.gig2"

+### if Cuname’ == Linux) set NETEXT=".myri"

+H##H#

+HH#H#H repeated host names in the PBS host file indicate being assigned

+H##HH# CPUs in the same SMP enclosure, which we must count up correctly.
+HHHH Fortunately PBS gives duplicate host names in a row, not scrambled.
+HHHH The number of hosts in the PBS node file (nmax) should equal the
+##H#H# requested processor count, NCPUS. We need to count duplicates
+H#H#HH# in order to learn the number of SMP enclosures, NNODES, and how
+H#HHH# many CPUs inside each SMP were assigned (NSMPCPU). For example,
+H#HH# if we are assigned the host names "aaa b b c cc"we must build

+H#HH# the string "a:cpus=3 b:cpus=2 c:cpus=3" so that ddikick.x will

+H#HH know the SMP structure of the assigned node names. (C-shell handles
+H#H#H# variable substitution followed by colon gracefully by S{HOST}:cpus.)
+H#H#

+### set HOSTLIST=()

+### set nmax="wc -l SPBS_NODEFILE"

+### set nmax=Snmax[1]

+### if (Snmax = SNCPUS) then

+H##H# echo There is processor count confusion

+H### exit

+### endif

+HH#HH Tst host in the list is sure to be a new SMP enclosure

+### set MYNODE="sed -n-e "1 p" SPBS_NODEFILE®
+### set MYNODE="echo SMYNODE | awk '{split($0,a,"."); print a[1]}""

+###H# IPROC counts assigned processors (up to NCPUS),
+HHHH NNODES counts number of SMP enclosures.
+HHHH NSMPCPU counts processors in the current SMP enclosure

+### @ IPROC=2

+### @ NNODES =1

+### @ NSMPCPU =1

+### set spacer1=":cpus="

+### set spacer2=":netext="

+### while(SIPROC <= Snmax)

+H### set MYPROC="sed -n -e "SIPROC p" SPBS_NODEFILE"

+H### set MYPROC="echo SMYPROC | awk '{split($0,a,"."); print a[1]}""
+### if(SMYPROC != SMYNODE) then

+### set HOSTLIST = (SHOSTLIST SMYNODESspacer1 SNSMPCPUSspacer2SNETEXT)
+H#H# set MYNODE=SMYPROC

+### @ NSMPCPU =0

+H#HH# @ NNODES++

+H### endif

+H### @ IPROC++

+H### @ NSMPCPU++

+### end

+### set HOSTLIST = (SHOSTLIST SMYNODESspacer1 SNSMPCPUSspacer2SNETEXT)
+### endif

+H##H#

+H#HH# we have now finished setting up a correct HOSTLIST.

+HH#H#H uncomment the next two if you are doing script debugging.
+####--echo "The generated host list is"

+####--echo SHOSTLIST

+HH#H#

+H##H#

+HHH#HH choose remote shell execution program.

+#### Parallel run do initial launch of GAMESS on remote nodes by the
+#### following program. Note that the authentication keys for ssh
+#### must have been set up correctly.

+#### If you wish, choose 'rsh' using .rhosts authentication on next line.
+### setenv DDI_RSH ssh

+H#H#

+### if(SDDI_RSH == ssh) then

+### setenv DDI_RCP scp

+### else

+### setenv DDI_RCP rcp

+### endif

+H###

+H##H# One way to be sure that the master node of each subgroup
+H#H#HH has its necessary copy of the input file is to stuff a

+H#H#H#H# copy of the input file onto every single node right here.

+### if (SGDDljob == true) then

+### @ n=2 # master in master group already did 'cp' above

+### while (Sn <= SNNODES)

+i### set host=SHOSTLIST[Sn]

+H##H# set host="echo Shost|cut-f1 -d :* # drop anything behind a colon
+### echo SDDI_RCP SSCR/SJOB.FO5 S{host}:SSCR/SJOB.F05

+H### SDDI_RCP SSCR/SJOB.F05 S${host}:SSCR/SJOB.FO5
+H## @ n++
+### end
+### endif
#
Just make sure we have the binaries, before we try to run
@@ -465,9 +471,10 @@
#
if (SDDI_VER == new) then
set echo

- SGMSPATH/ddikick.x SGMSPATH/gamess.SVERNO.x SJOB \
- -ddi SNNODES SNCPUS SHOSTLIST \
- -scr SSCR < /dev/null
+### SGMSPATH/ddikick.x SGMSPATH/gamess.SVERNO.x SJOB \
+H#H#H# -ddi SNNODES SNCPUS SHOSTLIST \
+### -scr SSCR < /dev/null
+ SGMSPATH/ddikick.x dplace -s1 SGMSPATH/gamess.SVERNO.x SJOB -ddi SNNODES SNCPUS
S{HOSTLIST} -scr SSCR < /dev/null

unset echo

else

set path=(SGMSPATH Spath)
@@ -1447,13 +1454,13 @@
if (-e SSCR/SJOB.molf) mv SSCR/S$JOB.molf SUSERSCR
if (-e SSCR/SJOB.mkl) mv SSCR/SJOB.mkl SUSERSCR
if (-e SSCR/SJOB.xyz) mv SSCR/$JOB.xyz SUSERSCR
-Is SSCR/S{JOB}-*.cube > SSCR/S{JOB}.lis
+(Is SSCR/S${JOB}-*.cube > SSCR/S${JOB}.lis) >& /dev/null

if (1 -z SSCR/S$S{JOB}.lis) mv SSCR/S${JOB}*.cube SUSERSCR
rm -f SSCR/S{JOB}.lis

-Is SSCR/S{JOB}-*.grd > SSCR/S{JOB}.lis

+(Is SSCR/S{JOB}-*.grd > SSCR/${JOB}.lis) >& /dev/null
if (1 -z SSCR/S{JOB}.lis) mv SSCR/S{JOB}*.grd SUSERSCR
rm -f SSCR/S{JOB}.lis

-Is SSCR/S${JOB}-*.csv > SSCR/S$S{JOBY.lis

+(Is SSCR/S{JOB}-*.csv > SSCR/S{JOB}.lis) >& /dev/null
if (! -z SSCR/S{JOB}.lis) mv SSCR/S{JOB}*.csv SUSERSCR
rm -f SSCR/S{JOB}.lis

#

Procedure of Compiling

#!/bin/csh -f

umask 022

set file_gamess=/home/users/S{USER}/build/gamess2013May01/gamess-2013May01.tar.gz
set work=/work/users/S{USER}

set gamess=gamess2013May01

set patch_rungms=/home/users/S{USER}/build/gamess2013May01/ccuv/rungms.patch

"

cd S${work}

if (-d S{gamess}) then
mv S{gamess} S{gamess}-erase
rm -rf S{gamess}-erase &

endif

H#
s

tar xzf S{file_gamess}

mv gamess ${gamess}

cd S${work}/S{gamess}

expect <<EXPECT

spawn ./config

expect "After the new window is open"

send "\r"

expect "please enter your target machine name:"
send "linux64\r"

expect "GAMESS directory?"

send "\r"

expect "GAMESS build directory?"

send "\r"

expect "Version?"

send "\r"

expect "Please enter your choice of FORTRAN:"
send "ifort\r"

expect "Version?"

send "12\r"

expect "hit <return> to continue after digesting this message."

send "\r"

expect "hit <return> to continue to the math library setup."

send "\r"

expect "Enter your choice of 'mkl' or 'atlas' or 'acml' or 'none":"

send "mklI\r"

expect "MKL pathname?"

send "/opt/intel/mkI\r"

expect "MKL version (or 'skip')?"

send "10.2.5.035\r"

expect "please hit <return> to compile the GAMESS source code activator"
send "\r"

expect "please hit <return> to set up your network for Linux clusters."
send "\r"

expect "communication library ('sockets' or 'mpi')?"

send "sockets\r"

expect "Do you want to try LIBCCHEM"

send "no\r"

expect eof

EXPECT

cd S{work}/S{gamess}/ddi

sed -e 's/MAXCPUS = 16/MAXCPUS = 1024/'-e 's/MAXNODES = 256/MAXNODES = 2/' compddi >
compddi1024

csh ./compddi1024 >& compddi.log

mv ddikick.x ../

cd S{work}/S{gamess}

./compall >& compall.log

./lked >& lked.log

chmod -R o-rwx source object

find . -name "src" | xargs chmod -R o-rwx

patch -p0 < ${patch_rungms}

