
GAMESS-2013May01 for UV2000

Webpage

http://www.msg.ameslab.gov/GAMESS/GAMESS.html

Version

May 1, 2013

Tools for Compiling

Intel Compiler 13.1.1.163

Needed files for Compiling

gamess-2013May01.tar.gz (from GAMESS webpage)

rungms.patch

Content of rungms.patch

--- rungms.orig 2013-05-18 01:15:11.000000000 +0900

+++ rungms 2013-08-21 13:28:19.759927571 +0900

@@ -60,9 +60,9 @@

 # See also a very old LoadLeveler "ll-gms" for some IBM systems.

 #

 set TARGET=sockets

-set SCR=/scr/$USER

-set USERSCR=~$USER/scr

-set GMSPATH=/u1/mike/gamess

+set SCR=/work/users/$USER/scr.$$

+if (! -d $SCR) mkdir $SCR

+set GMSPATH=/local/apl/uv/gamess2013May01

 #

 set JOB=$1 # name of the input file xxx.inp, give only the xxx part

 set VERNO=$2 # revision number of the executable created by 'lked' step

@@ -92,16 +92,11 @@

 uniq $TMPDIR/machines

 endif

 if ($SCHED == PBS) then

- set SCR=/scratch/$PBS_JOBID

+# set SCR=/scratch/$PBS_JOBID

 echo "PBS has assigned the following compute nodes to this run:"

 uniq $PBS_NODEFILE

 endif

 #

https://ccportal.ims.ac.jp/en/node/1340
http://www.msg.ameslab.gov/GAMESS/GAMESS.html

-echo "Available scratch disk space (Kbyte units) at beginning of the job is"

-df -k $SCR

-echo "GAMESS temporary binary files will be written to $SCR"

-echo "GAMESS supplementary output files will be written to $USERSCR"

-

 # this added as experiment, February 2007

 # its intent is to detect large arrays allocated off the stack

 limit stacksize 8192

@@ -134,6 +129,15 @@

 endif

 endif

+set dir=`dirname $JOB`

+set USERSCR=`cd $dir; pwd`

+

+echo "Available scratch disk space (Kbyte units) at beginning of the job is"

+df -k $SCR

+echo "GAMESS temporary binary files will be written to $SCR"

+echo "GAMESS supplementary output files will be written to $USERSCR"

+

+

 # define many environment variables setting up file names.

 # anything can be overridden by a user's own choice, read 2nd.

 source $GMSPATH/gms-files.csh

@@ -265,53 +269,55 @@

 # NODE= physical enclosure (box/blade)

 #

 # 1. Sequential execution is sure to be on this very same host

- if ($NCPUS == 1) then

+### if ($NCPUS == 1) then

+### set NNODES=1

+### set HOSTLIST=(`hostname`)

+### endif

+####

+#### 2. This is an example of how to run on a multi-core SMP enclosure,

+#### where all CPUs (aka COREs) are inside a -single- NODE.

+#### At other locations, you may wish to consider some of the examples

+#### that follow below, after commenting out this ISU specific part.

+### if ($NCPUS > 1) then

+### switch (`hostname`)

+### case se.msg.chem.iastate.edu:

+### case sb.msg.chem.iastate.edu:

+### if ($NCPUS > 2) set NCPUS=2

+### set NNODES=1

+### set HOSTLIST=(`hostname`:cpus=$NCPUS)

+### breaksw

+### case br.msg.chem.iastate.edu:

+### if ($NCPUS > 4) set NCPUS=4

+### set NNODES=1

+### set HOSTLIST=(`hostname`:cpus=$NCPUS)

+### breaksw

+### case cd.msg.chem.iastate.edu:

+### case zn.msg.chem.iastate.edu:

+### case ni.msg.chem.iastate.edu:

+### case co.msg.chem.iastate.edu:

+### case pb.msg.chem.iastate.edu:

+### case bi.msg.chem.iastate.edu:

+### case po.msg.chem.iastate.edu:

+### case at.msg.chem.iastate.edu:

+### case sc.msg.chem.iastate.edu:

+### if ($NCPUS > 4) set NCPUS=4

+### set NNODES=1

+### set HOSTLIST=(`hostname`:cpus=$NCPUS)

+### breaksw

+### case ga.msg.chem.iastate.edu:

+### case ge.msg.chem.iastate.edu:

+### case gd.msg.chem.iastate.edu:

+### if ($NCPUS > 6) set NCPUS=6

+### set NNODES=1

+### set HOSTLIST=(`hostname`:cpus=$NCPUS)

+### breaksw

+### default:

+### echo I do not know how to run this node in parallel.

+### exit 20

+### endsw

+### endif

 set NNODES=1

- set HOSTLIST=(`hostname`)

- endif

-#

-# 2. This is an example of how to run on a multi-core SMP enclosure,

-# where all CPUs (aka COREs) are inside a -single- NODE.

-# At other locations, you may wish to consider some of the examples

-# that follow below, after commenting out this ISU specific part.

- if ($NCPUS > 1) then

- switch (`hostname`)

- case se.msg.chem.iastate.edu:

- case sb.msg.chem.iastate.edu:

- if ($NCPUS > 2) set NCPUS=2

- set NNODES=1

- set HOSTLIST=(`hostname`:cpus=$NCPUS)

- breaksw

- case br.msg.chem.iastate.edu:

- if ($NCPUS > 4) set NCPUS=4

- set NNODES=1

- set HOSTLIST=(`hostname`:cpus=$NCPUS)

- breaksw

- case cd.msg.chem.iastate.edu:

- case zn.msg.chem.iastate.edu:

- case ni.msg.chem.iastate.edu:

- case co.msg.chem.iastate.edu:

- case pb.msg.chem.iastate.edu:

- case bi.msg.chem.iastate.edu:

- case po.msg.chem.iastate.edu:

- case at.msg.chem.iastate.edu:

- case sc.msg.chem.iastate.edu:

- if ($NCPUS > 4) set NCPUS=4

- set NNODES=1

- set HOSTLIST=(`hostname`:cpus=$NCPUS)

- breaksw

- case ga.msg.chem.iastate.edu:

- case ge.msg.chem.iastate.edu:

- case gd.msg.chem.iastate.edu:

- if ($NCPUS > 6) set NCPUS=6

- set NNODES=1

- set HOSTLIST=(`hostname`:cpus=$NCPUS)

- breaksw

- default:

- echo I do not know how to run this node in parallel.

- exit 20

- endsw

- endif

+ set HOSTLIST=(`hostname`:cpus=$NCPUS)

 #

 # 3. How to run in a single computer, namely the "localhost", so

 # this computer needn't have a proper Internet name.

@@ -363,90 +369,90 @@

 # names into the HOSTLIST string for the kickoff program,

 # and to request the host name of the fast network adapters.

 #

- if ($?PBS_JOBID) then

-#

-# The IBM cluster has two Gigabit adapters in each 4-way SMP,

-# while the AXP cluster is based on a Myrinet network.

- if (`uname` == AIX) set NETEXT=".gig,.gig2"

- if (`uname` == Linux) set NETEXT=".myri"

-#

-# repeated host names in the PBS host file indicate being assigned

-# CPUs in the same SMP enclosure, which we must count up correctly.

-# Fortunately PBS gives duplicate host names in a row, not scrambled.

-# The number of hosts in the PBS node file (nmax) should equal the

-# requested processor count, NCPUS. We need to count duplicates

-# in order to learn the number of SMP enclosures, NNODES, and how

-# many CPUs inside each SMP were assigned (NSMPCPU). For example,

-# if we are assigned the host names "a a a b b c c c" we must build

-# the string "a:cpus=3 b:cpus=2 c:cpus=3" so that ddikick.x will

-# know the SMP structure of the assigned node names. (C-shell handles

-# variable substitution followed by colon gracefully by ${HOST}:cpus.)

-#

- set HOSTLIST=()

- set nmax=`wc -l $PBS_NODEFILE`

- set nmax=$nmax[1]

- if ($nmax != $NCPUS) then

- echo There is processor count confusion

- exit

- endif

-# 1st host in the list is sure to be a new SMP enclosure

- set MYNODE=`sed -n -e "1 p" $PBS_NODEFILE`

- set MYNODE=`echo $MYNODE | awk '{split($0,a,"."); print a[1]}'`

-# IPROC counts assigned processors (up to NCPUS),

-# NNODES counts number of SMP enclosures.

-# NSMPCPU counts processors in the current SMP enclosure

- @ IPROC = 2

- @ NNODES = 1

- @ NSMPCPU = 1

- set spacer1=":cpus="

- set spacer2=":netext="

- while($IPROC <= $nmax)

- set MYPROC=`sed -n -e "$IPROC p" $PBS_NODEFILE`

- set MYPROC=`echo $MYPROC | awk '{split($0,a,"."); print a[1]}'`

- if($MYPROC != $MYNODE) then

- set HOSTLIST = ($HOSTLIST $MYNODE$spacer1$NSMPCPU$spacer2$NETEXT)

- set MYNODE=$MYPROC

- @ NSMPCPU = 0

- @ NNODES++

- endif

- @ IPROC++

- @ NSMPCPU++

- end

- set HOSTLIST = ($HOSTLIST $MYNODE$spacer1$NSMPCPU$spacer2$NETEXT)

- endif

-#

-# we have now finished setting up a correct HOSTLIST.

-# uncomment the next two if you are doing script debugging.

-#--echo "The generated host list is"

-#--echo $HOSTLIST

-#

-#

-# choose remote shell execution program.

-# Parallel run do initial launch of GAMESS on remote nodes by the

-# following program. Note that the authentication keys for ssh

-# must have been set up correctly.

-# If you wish, choose 'rsh' using .rhosts authentication on next line.

- setenv DDI_RSH ssh

-#

- if($DDI_RSH == ssh) then

- setenv DDI_RCP scp

- else

- setenv DDI_RCP rcp

- endif

-

-# One way to be sure that the master node of each subgroup

-# has its necessary copy of the input file is to stuff a

-# copy of the input file onto every single node right here.

- if ($GDDIjob == true) then

- @ n=2 # master in master group already did 'cp' above

- while ($n <= $NNODES)

- set host=$HOSTLIST[$n]

- set host=`echo $host | cut -f 1 -d :` # drop anything behind a colon

- echo $DDI_RCP $SCR/$JOB.F05 ${host}:$SCR/$JOB.F05

- $DDI_RCP $SCR/$JOB.F05 ${host}:$SCR/$JOB.F05

- @ n++

- end

- endif

+### if ($?PBS_JOBID) then

+####

+#### The IBM cluster has two Gigabit adapters in each 4-way SMP,

+#### while the AXP cluster is based on a Myrinet network.

+### if (`uname` == AIX) set NETEXT=".gig,.gig2"

+### if (`uname` == Linux) set NETEXT=".myri"

+####

+#### repeated host names in the PBS host file indicate being assigned

+#### CPUs in the same SMP enclosure, which we must count up correctly.

+#### Fortunately PBS gives duplicate host names in a row, not scrambled.

+#### The number of hosts in the PBS node file (nmax) should equal the

+#### requested processor count, NCPUS. We need to count duplicates

+#### in order to learn the number of SMP enclosures, NNODES, and how

+#### many CPUs inside each SMP were assigned (NSMPCPU). For example,

+#### if we are assigned the host names "a a a b b c c c" we must build

+#### the string "a:cpus=3 b:cpus=2 c:cpus=3" so that ddikick.x will

+#### know the SMP structure of the assigned node names. (C-shell handles

+#### variable substitution followed by colon gracefully by ${HOST}:cpus.)

+####

+### set HOSTLIST=()

+### set nmax=`wc -l $PBS_NODEFILE`

+### set nmax=$nmax[1]

+### if ($nmax != $NCPUS) then

+### echo There is processor count confusion

+### exit

+### endif

+#### 1st host in the list is sure to be a new SMP enclosure

+### set MYNODE=`sed -n -e "1 p" $PBS_NODEFILE`

+### set MYNODE=`echo $MYNODE | awk '{split($0,a,"."); print a[1]}'`

+#### IPROC counts assigned processors (up to NCPUS),

+#### NNODES counts number of SMP enclosures.

+#### NSMPCPU counts processors in the current SMP enclosure

+### @ IPROC = 2

+### @ NNODES = 1

+### @ NSMPCPU = 1

+### set spacer1=":cpus="

+### set spacer2=":netext="

+### while($IPROC <= $nmax)

+### set MYPROC=`sed -n -e "$IPROC p" $PBS_NODEFILE`

+### set MYPROC=`echo $MYPROC | awk '{split($0,a,"."); print a[1]}'`

+### if($MYPROC != $MYNODE) then

+### set HOSTLIST = ($HOSTLIST $MYNODE$spacer1$NSMPCPU$spacer2$NETEXT)

+### set MYNODE=$MYPROC

+### @ NSMPCPU = 0

+### @ NNODES++

+### endif

+### @ IPROC++

+### @ NSMPCPU++

+### end

+### set HOSTLIST = ($HOSTLIST $MYNODE$spacer1$NSMPCPU$spacer2$NETEXT)

+### endif

+####

+#### we have now finished setting up a correct HOSTLIST.

+#### uncomment the next two if you are doing script debugging.

+####--echo "The generated host list is"

+####--echo $HOSTLIST

+####

+####

+#### choose remote shell execution program.

+#### Parallel run do initial launch of GAMESS on remote nodes by the

+#### following program. Note that the authentication keys for ssh

+#### must have been set up correctly.

+#### If you wish, choose 'rsh' using .rhosts authentication on next line.

+### setenv DDI_RSH ssh

+####

+### if($DDI_RSH == ssh) then

+### setenv DDI_RCP scp

+### else

+### setenv DDI_RCP rcp

+### endif

+###

+#### One way to be sure that the master node of each subgroup

+#### has its necessary copy of the input file is to stuff a

+#### copy of the input file onto every single node right here.

+### if ($GDDIjob == true) then

+### @ n=2 # master in master group already did 'cp' above

+### while ($n <= $NNODES)

+### set host=$HOSTLIST[$n]

+### set host=`echo $host | cut -f 1 -d :` # drop anything behind a colon

+### echo $DDI_RCP $SCR/$JOB.F05 ${host}:$SCR/$JOB.F05

+### $DDI_RCP $SCR/$JOB.F05 ${host}:$SCR/$JOB.F05

+### @ n++

+### end

+### endif

 #

 # Just make sure we have the binaries, before we try to run

@@ -465,9 +471,10 @@

 #

 if ($DDI_VER == new) then

 set echo

- $GMSPATH/ddikick.x $GMSPATH/gamess.$VERNO.x $JOB \

- -ddi $NNODES $NCPUS $HOSTLIST \

- -scr $SCR < /dev/null

+### $GMSPATH/ddikick.x $GMSPATH/gamess.$VERNO.x $JOB \

+### -ddi $NNODES $NCPUS $HOSTLIST \

+### -scr $SCR < /dev/null

+ $GMSPATH/ddikick.x dplace -s1 $GMSPATH/gamess.$VERNO.x $JOB -ddi $NNODES $NCPUS

${HOSTLIST} -scr $SCR < /dev/null

 unset echo

 else

 set path=($GMSPATH $path)

@@ -1447,13 +1454,13 @@

 if (-e $SCR/$JOB.molf) mv $SCR/$JOB.molf $USERSCR

 if (-e $SCR/$JOB.mkl) mv $SCR/$JOB.mkl $USERSCR

 if (-e $SCR/$JOB.xyz) mv $SCR/$JOB.xyz $USERSCR

-ls $SCR/${JOB}-*.cube > $SCR/${JOB}.lis

+(ls $SCR/${JOB}-*.cube > $SCR/${JOB}.lis) >& /dev/null

 if (! -z $SCR/${JOB}.lis) mv $SCR/${JOB}*.cube $USERSCR

 rm -f $SCR/${JOB}.lis

-ls $SCR/${JOB}-*.grd > $SCR/${JOB}.lis

+(ls $SCR/${JOB}-*.grd > $SCR/${JOB}.lis) >& /dev/null

 if (! -z $SCR/${JOB}.lis) mv $SCR/${JOB}*.grd $USERSCR

 rm -f $SCR/${JOB}.lis

-ls $SCR/${JOB}-*.csv > $SCR/${JOB}.lis

+(ls $SCR/${JOB}-*.csv > $SCR/${JOB}.lis) >& /dev/null

 if (! -z $SCR/${JOB}.lis) mv $SCR/${JOB}*.csv $USERSCR

 rm -f $SCR/${JOB}.lis

 #

Procedure of Compiling

#!/bin/csh -f

umask 022

set file_gamess=/home/users/${USER}/build/gamess2013May01/gamess-2013May01.tar.gz

set work=/work/users/${USER}

set gamess=gamess2013May01

set patch_rungms=/home/users/${USER}/build/gamess2013May01/ccuv/rungms.patch

#--

cd ${work}

if (-d ${gamess}) then

 mv ${gamess} ${gamess}-erase

 rm -rf ${gamess}-erase &

endif

#--

tar xzf ${file_gamess}

mv gamess ${gamess}

cd ${work}/${gamess}

expect <<EXPECT

spawn ./config

expect "After the new window is open"

send "\r"

expect "please enter your target machine name:"

send "linux64\r"

expect "GAMESS directory?"

send "\r"

expect "GAMESS build directory?"

send "\r"

expect "Version?"

send "\r"

expect "Please enter your choice of FORTRAN:"

send "ifort\r"

expect "Version?"

send "12\r"

expect "hit <return> to continue after digesting this message."

send "\r"

expect "hit <return> to continue to the math library setup."

send "\r"

expect "Enter your choice of 'mkl' or 'atlas' or 'acml' or 'none':"

send "mkl\r"

expect "MKL pathname?"

send "/opt/intel/mkl\r"

expect "MKL version (or 'skip')?"

send "10.2.5.035\r"

expect "please hit <return> to compile the GAMESS source code activator"

send "\r"

expect "please hit <return> to set up your network for Linux clusters."

send "\r"

expect "communication library ('sockets' or 'mpi')?"

send "sockets\r"

expect "Do you want to try LIBCCHEM"

send "no\r"

expect eof

EXPECT

#--

cd ${work}/${gamess}/ddi

sed -e 's/MAXCPUS = 16/MAXCPUS = 1024/' -e 's/MAXNODES = 256/MAXNODES = 2/' compddi >

compddi1024

csh ./compddi1024 >& compddi.log

mv ddikick.x ../

cd ${work}/${gamess}

./compall >& compall.log

./lked >& lked.log

#--

chmod -R o-rwx source object

find . -name "src" | xargs chmod -R o-rwx

#--

patch -p0 < ${patch_rungms}

